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SUMMARY

Neuronal migration and axon guidance consti-
tute fundamental processes in brain develop-
ment that are generally studied independently.
Although both share common mechanisms of
cell biology and biochemistry, little is known
about their coordinated integration in the forma-
tion of neural circuits. Here we show that the
development of the thalamocortical projection,
one of the most prominent tracts in the mam-
malian brain, depends on the early tangential
migration of a population of neurons derived
from the ventral telencephalon. This tangential
migration contributes to the establishment of
a permissive corridor that is essential for thala-
mocortical axon pathfinding. Our results also
demonstrate that in this process two different
products of the Neuregulin-1 gene, CRD-NRG1
and Ig-NRG1, mediate the guidance of thalamo-
cortical axons. These results show that neuronal
tangential migration constitutes a novel mecha-
nism to control the timely arrangement of guid-
ance cues required for axonal tract formation
in the mammalian brain.

INTRODUCTION

The neural assembly underlying the formation of functional

networks in the central nervous system (CNS) is probably

the most complex biological system in vertebrates. Ulti-

mately, brain function depends on the ability of specific

populations of neurons to connect with a restricted num-

ber of appropriate synaptic partners among an astonishing

number of undesired targets. This pattern of connections,

which is highly reproducible among different individuals of
the same species, is established during development

through a series of consecutive events. This program be-

gins with the process of neural induction and the differen-

tiation of distinct classes of neurons from progenitor cells

(Jessell, 2000). Once distinct neuronal populations have

been generated, immature neurons migrate from progeni-

tor regions to more superficial positions of the neural tube,

where axonal connections eventually occur (Hatten, 2002).

Neurons then extend axons, which navigate through the

developing brain following highly stereotyped routes to

find specific targets (Tessier-Lavigne and Goodman,

1996). Finally, refinement of axonal terminals shapes the

pattern of synaptic connections that will ultimately imprint

the behaviors of the adult organism (Benson et al., 2000).

Somewhat surprisingly, these different events are normally

analyzed as independent processes, although it is evident

that they must have been efficiently linked through evolu-

tion to ensure the precise formation of neural circuits.

Axons are guided along specific pathways by guidance

molecules positioned in the extracellular environment

(Tessier-Lavigne and Goodman, 1996; Dickson, 2002).

They navigate following a series of distinct steps in which

specific guidance cues located at defined decision points

determine their direction. In axon pathfinding, therefore,

not only guidance factors are important; the precise distri-

bution of guidance molecules in time and space consti-

tutes an essential part of the process. Much progress

has been made during the past ten years in the identifica-

tion of molecules controlling growth cone guidance (Tess-

ier-Lavigne and Goodman, 1996; Dickson, 2002). In con-

trast, our understanding of the mechanisms controlling

the precise timing and arrangement of guidance cues is

much more limited. Patterning mechanisms contribute to

ensure that growth cones find their way in the brain by in-

ducing the expression of appropriate sets of guidance

molecules in specific groups of neuroepithelial cells. In ad-

dition to neuroepithelial cells, postmitotic neurons also

contribute to display guidance information as the brain
Cell 125, 127–142, April 7, 2006 ª2006 Elsevier Inc. 127

mailto:garel@biologie.ens.fr
mailto:garel@biologie.ens.fr
mailto:o.marin@umh.es


develops. Patterning information—and therefore the ex-

pression of guidance cues—is transferred from neural pro-

genitors to postmitotic cells through the process of radial

migration, in which neurons that are born nearby occupy

adjacent locations in the mantle (Rakic, 1988). Thus, radial

migration contributes to the arrangement of guidance cues

for axon guidance by faithfully conveying patterning infor-

mation from progenitors to postmitotic neurons.

Tangential migration represents a second general

mechanism of neuronal translocation in the developing

CNS (Hatten, 2002). This mode of migration is a primitive

trait of the vertebrate brain, and it is thought to have

evolved as a mechanism to increase the complexity of

neuronal circuits because it allows neurons born from

distant progenitor zones to intermingle in a final common

destination (Corbin et al., 2001; Marı́n and Rubenstein,

2001). The ability of tangential migration to supply distinct

regions of the nervous system with immigrant neurons

raises the intriguing question of whether this mode of mi-

gration may contribute to axonal pathfinding by providing

with novel guidance cues for growing axons. Tangential

migration occurs extensively throughout the nervous sys-

tem but is more prominent in the ventral telencephalon,

through which various major axonal tracts, such as the tha-

lamocortical connection, traverse. Thalamocortical pro-

jections constitute one of the most prominent higher-level

processing connections in the mammalian brain. Thalamo-

cortical axons (TCAs) convey sensory and motor inputs to

the cerebral cortex, where integration of this information

leads to perception and the organization of appropriate re-

sponses. The functional complexity of the thalamocortical

projection is the consequence of an extremely elaborate

process of axon guidance, orderly linking the various tha-

lamic nuclei with specific cortical regions.

Here we provide evidence for a novel mechanism of

axon guidance by demonstrating that the tangential migra-

tion of a specific neuronal population is essential for the

normal guidance of thalamocortical projections. These

neurons, which we have designated corridor cells, migrate

tangentially within the ventral telencephalon to generate an

intermediate target for TCAs, forming a permissive bridge

through an otherwise nonpermissive territory for the

growth of TCAs. Extension of TCAs through this permis-

sive corridor also requires the existence of axon-growth-

promoting factors generated in the developing cortex.

The molecular basis for this novel guidance mechanism

relies on different forms of the Neuregulin-1 (Nrg1) gene

and their ErbB4 receptor, which coordinately represent

the first signaling system identified to mediate the role of

tangentially migrating corridor cells in the guidance of

thalamocortical projections.

RESULTS

TCAs Navigate through a Corridor Generated

by Tangential Migration

TCAs follow a highly stereotyped pathway from their origin

in the dorsal thalamus to their final target, the cerebral
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cortex (López-Bendito and Molnár, 2003; Garel and Ru-

benstein, 2004). They run rostrally toward the telencepha-

lon, make a sharp turn dorsally to enter the mantle region of

the medial ganglionic eminence (MGE), and then advance

through the striatum to finally reach the developing cortex

(Figures 1A and 1I). As they first enter the telencephalon

around embryonic day (E) 13, TCAs navigate through

a narrow corridor located superficial to the progenitor

zones of the MGE and deep to the developing mantle,

where the globus pallidus is starting to form (Figure 1A).

The existence of this corridor through which TCAs specif-

ically extend suggests it may be involved in their guidance.

To test this possibility, we first examined the molecular

identity of cells present in this domain.

Cells located within the MGE corridor do not express de-

tectable levels of genes characteristic of this region, such

as Nkx2-1 or Lhx6 (Figures 1B and S1) (Sussel et al.,

1999). In contrast, we found that corridor cells specifically

express markers of lateral ganglionic eminence (LGE) de-

rivatives. In particular, corridor cells express Islet1, Ebf1,

and Meis2 (Figures 1C–1F and S1), three transcription fac-

tors present in the neighboring striatum, the main LGE

mantle derivative. Corridor cells also express the g-amino-

butyric acid (GABA) synthesis enzyme Gad67, suggesting

they are GABA-containing (GABAergic) neurons (Fig-

ure S1). Double immunohistochemistry using Calretinin

as a marker for TCAs demonstrated that incoming axons

grow in close contact with Islet1-expressing corridor cells

(Figures 1G and 1H). In sum, the MGE domain used by

TCAs to first grow into the telencephalon is unexpectedly

made of neurons expressing a combination of molecular

markers common to LGE derivatives (Figure 1I).

To understand how the corridor forms within the MGE,

we next examined the expression of the LGE markers at

early stages of development. A progressive expansion of

LGE markers into the MGE was found between E11.5

and E13.5 (Figures 1E and 2A–2D), raising the possibility

that corridor cells may migrate tangentially from the LGE

to the MGE before TCAs reach this region. To test this hy-

pothesis, we performed homotypic and isochronic trans-

plants of LGE progenitor zones from transgenic embryos

expressing green fluorescent protein (GFP) into wild-type

host slices (Figure 2E). In addition to an expected striatal

radialmigration (Figure 2F), transplantsgeneratedastream

of GFP-positive cells migrating tangentially into the MGE

(n = 17 at E12.5; n = 23 at E13.5) (Figures 2F and 2G). These

cells displayed a morphology characteristic of tangentially

migrating neurons in the developing telencephalon

(Figure 2H) (Marı́n and Rubenstein, 2001) and expressed

the LGE marker Islet1 (Figure 2I), reinforcing the idea that

MGE corridor cells derive from the LGE.

To confirm that the majority of corridor cells originate in

the LGE, we mechanically blocked their ventral migration

by inserting a semipermeable membrane between the

LGE and the MGE in E11.5-E12 telencephalic slices

(Figure 2J). After 48 hr in culture, the distribution of Islet1-

expressing cells was normal in control slices (Figure 2K),

whereas the insertion of a semipermeable membrane



Figure 1. TCAs Enter the Telencephalon through a Restricted Corridor in the MGE

(A) E13.5 coronal mouse telencephalic section showing axonal tracing of dorsal thalamic (dTh) axons (arrowhead) by insertion of a DiI crystal.

Coronal sections through the telencephalon of E13.5 embryos showing the expression pattern of Nkx2-1, Islet1, Ebf1, and Calretinin.

(B) Nkx2-1 expression is not detected in a corridor of cells (bracket) between the ventricular and subventricular zones (VZ/SVZ) of the medial gan-

glionic eminence (MGE) and the globus pallidus (GP), where TCAs navigate (arrowhead).

(C) Complementary expression of Islet1 and Nkx2-1 proteins.

(D) Higher magnification of the area boxed in (C).

(E) Coexpression of Ebf1 mRNA and Islet1 protein in the striatum (Str) and in the MGE corridor but not in preoptic area (POa, solid arrow).

(F) Higher magnification of the area boxed in (E), showing coexpression of Ebf1 and Islet1 in corridor cells (arrowheads).

(G) Calretinin-expressing TCAs navigate through the MGE corridor formed by Islet1-expressing cells. The corridor is just superficial to the route used

by Calbindin-expressing interneurons to migrate toward the cortex. The triple staining image was composed from immediate adjacent sections using

Adobe Photoshop software.

(H) Higher magnification of the corridor, showing that Calretinin-expressing TCAs (open arrowheads) navigate through the superficial part of the MGE

corridor, in close contact with Islet1-expressing cells (solid arrowheads). The bracket indicates the width of the corridor.

(I) Schema summarizing gene expression during TCA pathfinding in the ventral telencephalon. NCx, neocortex; LGE, lateral ganglionic eminence.

Scale bars = 300 mm (A, B, C, E, and G) and 50 mm (D, F, and H).
drastically reduced (n = 14) or abolished (n = 5) the pres-

ence of Islet1-positive cells in the MGE corridor (Figures

2L and 2L’). Taken together, our results show that the
MGE corridor is largely generated by tangential migration

from the LGE prior to the entrance of TCAs in the telen-

cephalon.
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Figure 2. MGE Corridor Cells Derive from the LGE and Are Permissive for TCAs Outgrowth

(A–D) Coronal sections through the telencephalon of E11.5 (A and C) and E12.5 (B and D) embryos showing the expression pattern of Ebf1 (A and B)

and double immunohistochemistry Islet1 and bIII-tubulin (C and D).

(E) Experimental paradigm used to test the origin of corridor cells.

(F) GFP immunohistochemistry showing LGE-derived cells in the striatum (solid arrowhead), neocortex (NCx), and MGE mantle (open arrowhead).

(G) Higher magnification of LGE-derived GFP cells forming a stream superficial to the globus pallidus (GP).

(H and I) Migratory morphology of GFP cells at the MGE corridor (H). Most of them express Islet1 (I, open arrowheads).

(J) Experimental paradigm used to block cell migration between the LGE and MGE.

(K and L) Expression of Islet1 in control (K) and experimental slices (L). Note that the membrane (delineated by arrows) does not affect Islet1-positive

cells in the POa. Arrows in (K) indicate the location of the control incision.

(L’) Double immunohistochemistry for Islet1 and Nkx2-1 in the same slice shown in (L).

(M) Experimental paradigm used to test the growth of E13.5 GFP dorsal thalamic (dTh) in the MGE.

(N) Bright-field image of a slice with a GFP dTh explant in the POa after 72 hr in culture.

(O and P) Islet1 and GFP immunohistochemistry showing that TCAs grow preferentially through the MGE Islet1-positive corridor (open arrowhead,

bracket in [P]) before fanning out in the striatum (Str; solid arrowheads). VZ/SVZ, ventricular/subventricular zone. Scale bars = 100 mm (A, C, and

O), 200 mm (B, D, K, L, L’, and N), 300 mm (F), 60 mm (G), 20 mm (H and I), and 70 mm (P).
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Territories Derived from the Medial Ganglionic

Eminence Are Nonpermissive for TCAs

To investigate how this early LGE migration relates to TCAs

pathfinding, we analyzed the ability of TCAs to grow into

MGE- and LGE-derived territories using a slice coculture

assay. In this assay, we dissected dorsal thalamic (dTh)

explants from GFP-expressing embryonic brains and con-

fronted them with wild-type telencephalic slices for 72–96

hr (Figure 2M). When confronted with the MGE, TCAs pref-

erentially grew into the LGE-derived corridor, avoiding the

MGE ventricular and subventricular zones (VZ and SVZ,

respectively) and globus pallidus (n = 38) (Figures 2O and

2P). The apposition of dTh explants to the striatum showed

a widespread axon invasion (n = 45) (Figure S2), demon-

strating that this territory is highly permissive for the growth

of TCAs. Thus, our in vitro assay reproduces the in vivo

behavior of TCAs in the ventral telencephalon: highly

fasciculated growth in the Islet1-positive corridor of the

MGE, avoiding progenitors and derivatives, and wide-

spread growth through the striatum.

The preferential growth of TCAs through the LGE-

derived corridor present in the MGE could be due to two

nonexclusive mechanisms: (1) MGE-derived territories

(i.e., VZ/SVZ and globus pallidus) are nonpermissive for

TCAs; and (2) The corridor is specifically attractive for

TCAs. To test these ideas, we first inserted small explants

of the MGE VZ/SVZ (n = 8) or globus pallidus (n = 9) into the

striatum and examined the behavior of GFP-positive TCAs

after 72 hr in culture (Figure S2). TCAs grew normally

through the striatum in control slices (n = 5), while they

systematically avoided the heterotypic MGE VZ/SVZ

(n = 8) or globus pallidus (n = 9) transplants (Figure S2).

Thus, compared to the striatum, MGE progenitors and

their derived territories are relatively nonpermissive to

TCAs outgrowth (Figure S2).

Corridor Cells Are Required for TCAs Guidance

We next tested whether corridor cells could facilitate the

growth of TCAs in an otherwise nonpermissive environ-

ment. In the experiments performed to validate our slice

assays, we found that the most caudal part of the ventral

telencephalon constitutes a nonpermissive territory for

TCAs outgrowth (n = 7) (Figures 3A and 3B). In contrast,

when a transplant containing corridor cells was grafted

into the caudal ventral telencephalon, TCAs were found

to invade the telencephalon specifically through the trans-

plant, as visualized by Islet1 immunohistochemistry (n = 8)

(Figures 3A, 3C, 3D, and 3D’). Thus, corridor cells are suf-

ficient to provide a permissive environment for TCAs to

cross a nonpermissive region.

To test if corridor cells are required for the normal growth

of TCAs, we performed a series of experiments in which we

prevented the formation of the MGE corridor by mechani-

cally blocking cell migration between the LGE and the MGE

(Figure 3E). Telencephalic slices in which corridor forma-

tion was blocked by the insertion of a semipermeable

membrane showed a drastic reduction in TCAs navigation

in the MGE domain as compared to control slices (n = 8)
(Figures 3F–3H). These experiments support an essential

role for tangential migration of corridor cells in TCAs

pathfinding.

To establish the involvement of corridor cells in the guid-

ance of TCAs in vivo, we searched for mouse mutants in

which the development of corridor cells is affected. The

Mash1 mutant constitutes an excellent candidate to test

our hypothesis since loss of this transcription factor leads

to a defect in the early development of the basal telenceph-

alon that correlates with an abnormal pathfinding of TCAs

(Casarosa et al., 1999; Tuttle et al., 1999). We found that

the MGE corridor does not form or is severely reduced in

Mash1 mutant embryos (Figures 3I and 3J and data not

shown), which may cause the initial blockage of TCAs at

their entry point in the telencephalon (Figures 3K and 3L).

Slice experiments showed that cell migration from the

LGE is drastically impaired in Mash1 mutant embryos,

most likely causing the observed defect in corridor forma-

tion (data not shown). Thus, Mash1 mutant slices represent

a corridor-free system in which we could further test the

role of these cells in TCAs pathfinding.

As expected from our previous results, wild-type TCAs

largely failed to transverse the MGE in rostral slices from

Mash1 mutant embryos (n = 11) (Figures 3M and 3N). We

next tested whether a graft of wild-type LGE progenitor

zones—the origin of corridor cells—in Mash1 mutant slices

could rescue the formation of the corridor in the MGE and

thereby restore TCAs pathfinding. Wild-type LGE trans-

plants gave rise to ventrally migrating cells in approxi-

mately half of the experiments (n = 13 out of 25 slices)

(Figures 3O and 3P). In a vast majority of these experi-

ments, migrating cells reached the dTh explants (n = 9

out of 13). Remarkably, formation of the corridor restored

the growth of wild-type TCAs into the Mash1 mutant MGE

territory (Figure 3O). Analysis of the nontransplanted side

to the slice, used as a control, demonstrated that TCAs

consistently fail to grow toward the cortex in the absence

of the corridor (n = 25 out of 25 slices). Finally, since the

MGE is also affected in Mash1 mutants (Casarosa et al.,

1999), we performed additional control experiments in

which wild-type MGE was homotypically transplanted in

Mash1 mutant slices. MGE transplants restored the migra-

tion of interneurons from the MGE into the cortex (which is

perturbed in Mash1 mutants; see Casarosa et al., 1999) but

did not rescue the growth of TCAs through the ventral tel-

encephalon (n = 24 slices) (Figure S3). In sum, this series of

experiments indicates that the absence of LGE-derived

corridor cells in Mash1 mutants specifically contributes

to the inability of TCAs to extend through the MGE. Further-

more, they show that tangential migration of corridor cells

is necessary and sufficient for the normal navigation of

TCAs in the ventral telencephalon.

CRD-NRG1 Is Expressed by Corridor Cells and

Contributes to TCAs Guidance

We next investigated the molecular basis for the role of cor-

ridor cells in TCAs guidance. We have recently described

that different isoforms of the Neuregulin-1 (Nrg1) gene act



Figure 3. The Corridor Is a Permissive Territory Necessary and Sufficient for TCA Pathfinding

(A) Experimental paradigm used to test whether the medial ganglionic eminence (MGE) corridor is necessary for TCAs extension.

(B and C) GFP immunohistochemistry showing the behavior of TCAs in control (B) and experimental slices (C).

(D and D’) Higher magnification of TCAs in (C) showing the presence of Islet1-positive corridor cells.

(E) Experimental paradigm used to test the requirement of LGE to MGE migration for TCA guidance.

(F) GFP immunohistochemistry showing that a control incision (left hemisphere) does not affect TCAs growth toward the neocortex (NCx, open ar-

rowheads), whereas insertion of a membrane (asterisk, right hemisphere) impairs the growth of TCAs.

(G and H) A higher magnification of control (G) and a membrane inserted (dashed line in H) slices showing GFP and Islet1 immunohistochemistry.

TCAs outgrowth correlates with the presence of Islet1-expressing cells (open arrowhead in [G]).

(I and J) Ebf1 mRNA expression at E14.5 shows that MGE corridor formation (solid arrowhead in [I]) is impaired in Mash1 mutant embryos (J). Open

arrowheads mark the LGE/MGE boundary, and a red dashed line delineates the pallium/subpallium boundary (P/Sp).

(K and L) DiI labeling of TCAs (open arrowheads) in coronal sections through E14.5 brains in control (K) and Mash1 mutant embryos (L).

(M) Experimental paradigm used to test the ability of LGE-derived MGE corridor cells to restore TCAs growth in the Mash1 mutant telencephalon.
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as short- and long-range attractants for migrating cortical

interneurons (Flames et al., 2004). Interestingly, we ob-

served that the LGE-derived corridor found within the

MGE expresses high levels of membrane bound isoforms

ofNrg1 (CRD-Nrg1or type III NRG1) (Figures 4A–4C), raising

the possibility thatCRD-NRG1may participate incontrolling

TCAs navigation. To test this hypothesis, we adapted an

assay in which the complete TCA pathway is preserved in

a single slice culture (Agmon and Connors, 1991) and

placed aggregates of CRD-Nrg1-expressing COS cells in

the ventral telencephalon prior to the entrance of TCAs in

this territory (Figure 4E). TCAs that encountered COS cell

aggregates expressing CRD-Nrg1 were diverted from their

normal pathway (n = 21) (Figures 4I–JK), whereas control

cell aggregates did not influence the guidance of TCAs

(n = 28) (Figures 4F–4H). Thus, TCAs preferentially grow in

contact with CRD-NRG1-expressing cells in slice cultures.

To assess the function of CRD-NRG1 in the guidance of

TCAs in vivo, we examined mutant embryos in which CRD-

containing isoforms of NRG1 are disrupted through gene

targeting, but diffusible NRG1 proteins (type I and type II

NRG1, also known as Ig-NRG1 isoforms) are still produced

(Wolpowitz et al., 2000). We analyzed TCAs development

in these mutant mice at E14.5 by placing crystals of DiI in

the developing dTh. These experiments revealed a disor-

ganized arrangement of TCAs as they progress through

the MGE in CRD-Nrg1 mutants (n = 3) (Figures 4P, 4Q,

and 4S) as compared to controls (n = 3) (Figures 4L, 4M,

and 4O). Labeling of TCAs using L1 immunohistochemistry

(Fukuda et al., 1997) confirmed this observation (n = 3)

(Figure S4) and showed that fewer TCAs reached the

neocortex in CRD-Nrg1 mutants than controls (n = 3)

(Figures 4N, 4O, 4R, and 4S). Thus, CRD-NRG1 expression

in corridor cells contributes to the navigation of TCAs

within the ventral telencephalon in vivo.

Different Isoforms of NRG1 Cooperate to Control

TCAs Pathfinding

The previous results prompted us to search for additional

molecules that could contribute to the growth of TCAs

even in the absence of the permissive substrate that

CRD-NRG1 represents. Since Ig-Nrg1is expressed in the

cortex at the time TCAs first enter the telencephalon

(Figure 5A), we wondered whether the diffusible forms of

NRG1 could also contribute to their guidance. To test

this hypothesis, we cocultured E13.5 dTh explants with

COS cells aggregates expressing Ig-Nrg1 in a three-

dimensional matrix. In these experiments, axons did not

specifically extend toward the source of NRG1, but instead

Ig-NRG1 dramatically promoted their outgrowth (n = 21)
(Figures 5B–5D and S5). This effect was observed inde-

pendently of the type of three-dimensional matrix used

and was reproduced by the purified EGF-like domain of

human Ig-NRG1 (Figure S5).

We next examined the consequences of loss of Ig-NRG1

in the outgrowth of TCAs within the telencephalon.

Although Ig-Nrg1 expression is found throughout the

cerebral cortex around E15.5 (Flames et al., 2004), the

domain of Ig-Nrg1 expression is largely confined to ventral

and lateral divisions of the pallium when the earliest TCAs

enter the telencephalon, around E13-E13.5 (Figure 5A).

Based on this observation, we predicted that ablation of

the VZ at the pallial/subpallial boundary—the ‘‘angle’’ re-

gion—would result in a reduction of secreted NRG1,

thereby influencing TCAs in our slice culture system

(Figure 5E). While in control experiments TCAs reached

the cortex within 72 hr in culture (n = 8) (Figures 5F and

5H), complete angle ablations drastically affected axonal

navigation, preventing TCAs to reach the cortex (n = 19

out of 21) (Figures 5G and 5H). These experiments suggest

that the angle region contributes to the growth of TCAs

through long-range factors since it influences axonal

outgrowth long before they reach the pallium.

To directly test if the TCA outgrowth blockage produced

by the angle ablation was partly due to a reduction of

Ig-NRG1 levels, we supplied angle-ablated slice cultures

with exogenous Ig-Nrg1-expressing COS cells, placed in

the lateral cortex or at the pallial/subpallial boundary

(Figure 5I). While ablation experiments with control cells

drastically affected TCA navigation (n = 16 out of 19)

(Figures 5J and 5J’ and data not shown), addition of

Ig-Nrg1-expressing COS cells to the slice cultures res-

cued the growth of TCAs toward the cortex (n = 16 out

of 27) (Figures 5K–L’). In addition, these experiments dem-

onstrated that in a physiologically relevant context

Ig-NRG1 controls the oriented growth of TCAs since later-

ally placed aggregates were able to partially derail grow-

ing axons from their normal trajectory to the neocortex

(Figures 5K and 5K’).

To reveal the contribution of Ig-NRG1 to the guidance of

TCAs in vivo, we next analyzed embryos in which all forms

of NRG1 were disrupted through gene targeting specifi-

cally restricted to the telencephalon. L1 staining and DiI

tracing at E14 revealed that in the absence of telence-

phalic NRG1 TCAs entered the telencephalon as in con-

trols but defasciculated through the MGE corridor and

largely failed to progress toward the cortex (n = 3) (Figures

6 and S4). This defect was found to be partially persistent

in neonatal embryos (n = 3) (Figure S6) and was not due to

an absence of corridor formation, as shown by Islet1
(N) DiI-labeled TCAs do not grow toward the neocortex in Mash1 mutant slices, although they can ectopically invade the piriform cortex (PCx; arrow).

(O) GFP expression showing that a graft of GFP-LGE VZ/SVZ (dotted circle) into the LGE of Mash1 mutant slices generates cells that migrate tangen-

tially into the MGE (solid arrowheads), forming a corridor used by DiI-labeled TCAs (open arrowhead) to extend toward the NCx.

(P) GFP and Islet1 immunohistochemistry showing that wild-type GFP-expressing neurons migrate from the LGE into the MGE of Mash1 mutant

slices. GP, globus pallidus; Str, striatum; vTh, ventral thalamus; VZ/SVZ, ventricular/subventricular zone. Scale bars = 200 mm (B, C, and F),

100 mm (D, D’, G, and H), 300 mm (I–L), 150 mm (N and O), and 100 mm (P).
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Figure 4. CRD-Nrg1 Is Expressed in MGE Corridor Cells and Contributes to TCA Pathfinding

Serial coronal sections through the telencephalon of E13.5 embryos.

(A) CRD-Nrg1 expression in the striatum (Str) and in cells forming the medial ganglionic eminence (MGE) corridor (arrowhead).

(B) Islet1 expression in the Str and in cells forming the MGE corridor (arrowhead, bracket).

(C) Islet 1 and CRD-Nrg1 in MGE corridor cells (arrowhead, bracket). Double in situ image was composed from immediate adjacent sections using

Adobe Photoshop software.

(D) ErbB4 expression in the dorsal thalamus (dTh).

(E) Experimental paradigm used to analyze the response of TCAs to CRD-Nrg1-transfected COS cell aggregates in slice cultures.

(F and I) DiI-labeled TCAs traveled normally through the telencephalon toward the neocortex (NCx) in controls (F) but derailed from their normal path

(arrowhead in [I]) when they contact a COS cell aggregate expressing CRD-NRG1. Asterisks mark DiI placements in the dorsal thalamus (dTh).
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expression in the Nrg1 mutant MGE (Figure S7). Alto-

gether, these experiments suggest that CRD-NRG1 and

Ig-NRG1 proteins cooperate in vivo to guide TCAs through

the MGE corridor on their way to the neocortex.

ErbB4, a NRG1 Receptor, Is Required for TCAs

Navigation

NRG1 directly binds to ErbB3 and ErbB4 receptors, which

alone or in combination with ErbB2 mediate a large range

of functions (Falls, 2003). ErbB4 receptors are expressed

by thalamic neurons at the time they start extending their

axons toward the telencephalon (Figure 4D and data not

shown), suggesting that ErbB4 signaling may underlie

the function of NRG1 in TCAs guidance. To test this

hypothesis, we analyzed the thalamocortical projection

by DiI tracing at E14 in a strain of ErbB4 mutant embryos

(Tidcombe et al., 2003). As in the case of Nrg1 mutant

embryos, TCAs largely failed to progress normally through

the MGE in ErbB4 mutants, extending in all directions

within ventral telencephalic region (n = 3) (Figures 7A–7F).

Further analysis of ErbB4 mutants revealed that the mi-

gration of LGE-derived corridor cells to the MGE does not

depend on ErbB4 function (Figure S7), suggesting that the

observed defects were cause by a cell-autonomous

mechanism. To directly test this, we performed two sets

of experiments: (1) We expressed a dominant-negative

form of ErbB4 (dnErbB4) in the dTh by focal electropora-

tion in embryonic slices (Figure 7G); and (2) We recom-

bined wild-type telencephalic slices with dTh explants

from ErbB4 mutant embryos (Figure 7J). In control electro-

poration experiments (n = 26) (Figure 7H) or recombination

experiments (n = 10 out of 10 slices) (Figures 7K), axons

formed a tight organized bundle in the ventral telenceph-

alon before reaching the cortex. In contrast, in slices

electroporated with dnErbB4, axons failed to organize in

a compact bundle through the MGE, navigating randomly

in all directions within the ventral telencephalon (n = 27)

(Figure 7I). Similarly, axons derived from ErbB4 mutant

explants largely fail to reach the neocortex (n = 22 out of

23 slices) (Figures 7L). Thus, loss of ErbB4 function in

the dTh resulted in a similar phenotype to the ErbB4 mu-

tant, in which TCAs enter the telencephalon but fail to

progress efficiently toward the cortex (Figures 7C and

7F). Altogether, these results strongly suggest that

ErbB4 signaling in TCAs is required for their proper navi-

gation in the ventral telencephalon and are in agreement

with the hypothesis that ErbB4 mediates the function of

NRG1 in this process.
DISCUSSION

During development of the nervous system, axons are

guided by specific cues presented at defined decision

points along their pathway. The precise distribution of

the various guidance cues frequently depends on early

patterning mechanisms, which control their timely expres-

sion in the neuroepithelium. We have shown that tangen-

tial migration of intermediate targets constitute a novel

mechanism to effectively position guidance cues—both

in time and space—for growing axons. Specifically, the

normal development of the thalamocortical projection,

one of the most prominent tracts in the forebrain, depends

on the early tangential migration of GABAergic neurons

from the LGE to the MGE. This tangential migration is es-

sential to form a permissive corridor required for TCAs to

navigate through the telencephalon (Figure 8A). Our results

also demonstrate that ErbB4 and two different products of

the Nrg1 gene, CRD-NRG1 and Ig-NRG1, control the guid-

ance of TCAs in the telencephalon.

Corridor Cells Constitute an Essential Territory for

the Guidance of TCAs

TCAs convey sensory and motor inputs to the cerebral

cortex, where integration of this information leads to the

organization of appropriate responses to internal and

external stimuli. To reach the cortex, TCAs follow a very

complex path that includes multiple guidance decision

points (Braisted et al., 1999; Auladell et al., 2000). In this

study, we have characterized the territory used by TCAs

to initially extend through the telencephalon. Somewhat

surprisingly, this MGE domain is formed by LGE-derived

GABAergic neurons that migrate tangentially to their final

position before TCAs reach the telencephalon. These

neurons, which we have named corridor cells, appear to

be essential for the proper pathfinding of TCAs at early

stages of development. This is well illustrated by the anal-

ysis of Mash1 mutants, in which corridor cells fail to invade

the MGE and TCAs can hardly progress through the

ventral telencephalon. The requirement of corridor cells

in the normal guidance of TCAs is further supported by

experiments in which rescue of the corridor domain in

Mash1 mutant slices restores thalamocortical projections.

Thus, corridor cells form a bridge between two permissive

territories for TCAs, the prethalamic region and the stria-

tum, which are initially separated by nonpermissive

MGE-derived cells (Figure 8A). This conclusion is sup-

ported by the analysis of Nkx2-1 mutant embryos, in which
(G and J) Higher magnifications of the images shown in (F) and (I), respectively.

(H and K) Schematic representation of the pathway taken by TCAs in response to control and CRD-Nrg1 transfected COS cell aggregates.

(L and P) Nuclear counterstain of CRD-Nrg1 heterozygous (L) and CRD-Nrg1 mutant (P) E14.5 coronal sections shows that TCAs abnormally defas-

ciculate in the MGE corridor of mutants (open arrowheads and brackets in [P] and [Q]) compared to controls (arrowheads and brackets in [L] and [M]).

(M and Q) High magnifications of DiI-labeled axons in E14.5 CRD-Nrg1 heterozygous (M) and CRD-Nrg1 mutant (Q) showing that the MGE corridor is

wider and more disorganized in CRD-Nrg1 mutants (arrowheads) than in control brains.

(N and R) High magnification of L1-labeled axons observed in the NCx of control (N) and CRD-Nrg1 mutants (R) at E14.5.

(O and S) Schematic representation of the pathway taken by TCAs in control and CRD-Nrg1 mutants. H, hippocampus; Hb, habenula; Hyp, hypo-

thalamus; LGE, lateral ganglionic eminence; GP, globus pallidus; PCx, piriform cortex. Scale bars = 200 mm (A–D, H, L, J, and P), 1 mm (F and I),

300 mm (G and J), and 100 mm (M, N, Q, and R).
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Figure 5. Ig-NRG1 Controls the Oriented Outgrowth of TCAs

(A) Ig-Nrg1 mRNA expression in the developing cortex at E13.5.

(B and C) bIII-Tubulin immunohistochemistry showing dorsal thalamic (dTh) explants from E13.5 embryos after 96 hr in culture adjacent to mock trans-

fected (B) or Ig-Nrg1 transfected (C) COS cell aggregates (dotted lines). Insets show GFP expression in transfected COS cells.

(D) Quantification of axonal length in the experiments shown in (B) and (C). Additional quantifications are displayed in Figure S4.

(E) Experimental paradigm used to test the effect of ventricular zone ablations in the angle region on the growth of GFP-positive dTh axons in E13.5

telencephalic slices.

(F and G) GFP expression showing that TCAs (open arrowheads) extend through the medial ganglionic eminence (MGE), lateral ganglionic eminence

(LGE), and neocortex (NCx) in control slices but fail to do so in angle ablation slices (asterisk in [G]).

(H) Qualification of the experiments shown in (F) and (G).

(I) Experimental paradigm used to test the effect of control or Ig-Nrg1 transfected COS cell aggregates on the growth of GFP-positive dTh axons in

E13.5 angle-ablated telencephalic slices.
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Figure 6. Abnormal Development of

TCAs in the Absence of All Nrg1 Isoforms

(A and E) Coronal sections through E14 control

(A) and Nrg1 mutant (E) embryos showing nu-

clear staining and DiI labeling after dorsal tha-

lamic (dTh) injections.

(B, C, F, and G) Higher magnifications of the in-

ternal capsule region (arrows) in control (B and

C) and Nrg1 mutant (F and G) embryos.

(D and H) Schematic representation of the

pathway taken by TCAs in control and Nrg1

mutant brains. GP, globus pallidus; Hyp, hypo-

thalamus; Str, striatum. Scale bar = 300 mm

(A and E) and 200 mm (B, C, F, and G).
MGE-derived territories fail to form at the expense of

an expanded LGE domain (Sussel et al., 1999) and thala-

mocortical connections still form normally (Marı́n et al.,

2002).

The Angle Region Is Essential for TCA Growth

In the course of our experiments, we have found that the

most ventral region of the pallium—the angle region—is

essential for the growth of TCAs through the telencepha-

lon. Specifically, removal of this small region in telence-

phalic slices prevents the extension of TCAs through the

telencephalon. This behavior does not seem to depend

on structural changes in the pathway followed by TCAs

since ablation of the angle region was performed after

corridor cells occupied their normal position in the MGE

and the rest of the subpallium was unaffected by the

manipulation. Instead, our experiments suggest that the

angle region containsanactivity that isnecessary for the ex-

tension of TCAs.

Previous studies have proposed that the structural in-

tegrity of the pallial/subpallial boundary is required for

the guidance of TCAs and corticofugal axons (Jones

et al., 2002). Unexpectedly, we have found that the angle

region also influences TCAs growth at a long distance,

suggesting that diffusible factor(s) released by this region

regulates the guidance of TCAs.
NRG1 Guides Thalamocortical Projections through

the Ventral Telencephalon

Although thalamocortical projections are probably among

the most studied connections in the developing brain

(Wise and Jones, 1978; Ghosh et al., 1990; Molnár et al.,

1998a; Garel et al., 2002; López-Bendito et al., 2002;

Marı́n et al., 2002), little was known about the molecular

nature of the signals controlling their guidance. The first

guidance decision point, which enables TCAs to enter

the telencephalon, appears to rely on the repulsive activity

of Slit1 and Slit2 present in the hypothalamus (Bagri et al.,

2002). In addition, several studies have identified cell pop-

ulations in the ventral thalamus and telencephalon that

grow axonal projections in opposite direction to TCAs

and may facilitate TCAs guidance (Mitrofanis and Baker,

1993; Métin and Godement, 1996; Braisted et al., 1999;

Molnár and Cordery, 1999), although the exact role and

molecular basis of this axonal interaction remains to be

determined.

Once in the telencephalon, very few guidance cues

have shown a prominent effect on TCAs. Slits have been

involved in the repulsion of TCAs away from the ventral

midline (Bagri et al., 2002), Netrin-1 in the restriction of the

internal capsule width (Braisted et al., 2000), and Sema6A

and Eph/ephrins in the guidance of some TCAs (Leighton

etal., 2001; Dufouretal., 2003). Inaddition, Netrin-G1 ligand
(J–L) Nuclear staining and dsRed expression in angle-ablated telencephalic slices with control (J) or Ig-Nrg1 transfected (K and L) COS cell aggre-

gates. The dotted lines delineate COS cell aggregates, whereas dashed lines delineate dTh explants.

(J’–L’) GFP expression in the same slices (J–L), showing that TCAs (open arrowheads) fail to extend toward the cortex in control slices (J’) but do so in

angle-ablated slices containing Ig-Nrg1 transfected COS cell aggregates (K’ and L’). Scale bar = 500 mm (A–C) and 200 mm (F, G, J, J’, K, K’, L, and L’).
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Figure 7. Loss of ErbB4 Function Per-

turbs TCA Guidance

(A and D) Coronal sections through E13.5

ErbB4 heterozygous (A) and ErbB4 mutant (D)

brains showing nuclear staining and DiI label-

ing (arrowheads in D) after dorsal thalamic

(dTh) injections.

(B and E) Higher magnifications of the images

shown in (A) and (E), respectively.

(C and F) Schematic representation of the path-

way taken by TCAs in a control situation (C) or

in the absence of ErbB4 function (F).

(G) Experimental paradigm used to analyze the

effect of a dominant-negative form of ErbB4

(dnErbB4) in the guidance of dTh axons.

(H and I) GFP immunohistochemistry showing

TCAs as they extend through the striatum

(Str) toward the neocortex (NCx) in control (H)

and Gfp + dnErbB4 electroporated slices (I).

(J) Experimental paradigm used to test the

growth of E13.5 wild-type or ErbB4�/� dTh

explants in wild-type telencephalic slices.

(K and L) DiI labeling and nuclear staining

showing wild-type (K) and ErbB4�/� (L) TCAs

as they extend through wild-type telencephalic

slices. GP, globus pallidus; Hyp, hypothala-

mus; PCx, piriform cortex. Scale bars = 1 mm

(A, D, H, I, K, and L) and 200 mm (B and E).
and hepatocyte growth factor promote thalamic axons

outgrowth in vitro (Lin et al., 2003; Powell et al., 2003).

Our results suggest that different isoforms of NRG1 are

important signals for the guidance of TCAs and that ErbB4

is part of the receptor complex required to transduce the

effect of NRG1 (Figure 8A). First, CRD-NRG1 expression

in corridor cells contributes to the pathfinding of TCAs

as they initially enter the developing telencephalon. The

lack of a complete block in the growth of TCAs through

the MGE corridor in CRD-Nrg1 and conditional Nrg1 mu-

tant embryos suggests that additional factors accounting

for the permissive activity of corridor cells remain to be

identified. Alternatively, the nonpermissive nature of the
138 Cell 125, 127–142, April 7, 2006 ª2006 Elsevier Inc.
territories surrounding the MGE corridor may force TCAs

to use corridor cells as a substrate even in the absence

of CRD-NRG1, especially in view of the fact that TCAs

outgrowth is strongly promoted in the telencephalon.

Several lines of evidence suggest that expression of

Ig-Nrg1 in the pallium accounts at least in part for the out-

growth-promoting activity found in this region. First, this

diffusible form of the Nrg1 gene is timely expressed by

progenitors cells in the most ventral region of the pallium

prior to the entrance of TCAs in the telencephalon. Sec-

ond, Ig-NRG1, largely via its EGF-like domain, is a promi-

nent axonal outgrowth-promoting factor for dTh axons in

vitro. Third, in the context of the slice assays, Ig-NRG1



Figure 8. Tangential Migration and Axon Guidance in the Central Nervous System

(A) A model of TCAs guidance by tangential migration of corridor cells and NRG1 expression. GABAergic neurons migrate tangentially from the lateral

ganglionic eminence (LGE) to form a corridor in the medial ganglionic eminence (MGE) around E12.5 (blue line) prior to the entrance of TCAs in the

telencephalon. At this early stage, the MGE territory is not permissive for TCAs (dark purple area). LGE-derived neurons colonize the MGE mantle

around E13.5, forming a permissive corridor for TCAs in this region. CRD-NRG1 expression by corridor cells contributes to the guidance of TCAs

through this region, which also requires secreted Ig-NRG1 from the pallium (green gradient). Tangential migration and axon guidance in the devel-

oping neural tube.

(B) Radial glia provides structural support for radial migration, a process that results in the generation of different nuclei topographically organized in

relation to their place of origin.

(B’) Tangential migration is independent of radial glia processes and therefore does not respect topographical references. As a result, tangential mi-

gration produces an increase in the cellular complexity of neural circuits by providing cell types distinct from those locally generated and represents

a novel mechanism for presenting cues to navigating axons.
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can replace the function of the angle region in the guid-

ance of TCAs, acting as a long-range attractant. Fourth,

TCAs fail to extend normally through the telencephalon

in mice with a loss of function mutation in the Nrg1 gene.

These results strongly suggest that both isoforms of

NRG1 cooperate in the guidance of TCAs through the ven-

tral telencephalon. Thus, in addition to the recent role of

these two isoforms as attractive cues for interneurons mi-

grating toward the developing cortex (Flames et al., 2004),
our study demonstrates a novel involvement of NRG1 in

axonal guidance. Furthermore, it shows that the same

set of cues coordinates the guidance of two major inputs

to cortical development and function, interneurons and

TCAs. It is worth noting, however, that cortical interneu-

rons and thalamic axons navigate in parallel, nonoverlap-

ping routes within the ventral telencephalon (Figure S3).

In addition, since both interneurons and TCAs persist in

neonatal Nrg1 and ErbB4 mutant embryos (Flames et al.,



2004) (Figure S6 and data not shown), it is clear that this

signaling system cooperates with other unidentified mole-

cules to control their guidance.

Tangential Migration-Mediated Axon Guidance

Axon guidance depends on the precise arrangement of

guidance molecules in the extracellular environment

(Tessier-Lavigne and Goodman, 1996; Dickson, 2002).

During early stages of development, neuroepithelial cells

are patterned to secrete most guidance cues and thereby

influence the establishment of early axonal tracts. This is,

for example, the case of the floor plate, which controls the

guidance of spinal commissural axons through the pro-

duction of Netrin-1 and Sonic hedgehog (Serafini et al.,

1996; Charron et al., 2003). As development proceeds,

however, additional guidance cues need to be deployed

to ensure the guidance of axonal tracts that navigate

away from progenitor regions. In a general sense, it has

been assumed that radial migration has served as the

general mechanism involved in transferring patterning

information from the neuroepithelium to the mantle and

is therefore responsible for positioning guidance cues at

appropriate times and locations in the brain (Figure 8B).

Here we have shown that neuronal tangential migration

is a novel mechanism controlling the timely arrangement

of guidance cues during development of the mammalian

brain (Figure 8B’).

During evolution, tangential migration may have evolved

to increase the complexity of neuronal circuits (Marı́n and

Rubenstein, 2001). In addition to this major evolutionary

advantage, tangential migration may have contributed to

the development or reorganization of axonal projections

in the brain by providing additional intermediate targets

and guidance cues for growing axons. Through this pro-

cess, tangentially migrating neurons may have permitted

developing axons to bypass nonpermissive territories,

thereby contributing to the emergence of new connec-

tions. Our experiments on the development of thalamo-

cortical projections illustrate this point. In the absence of

corridor cells in the MGE domain, embryonic TCAs fail to

enter the telencephalon or grow into ventral telencephalic

regions, suggesting that corridor formation is a major

requirement for the development of thalamic projections.

Thus, our experimental evidence supports the hypothesis

that tangential migration of corridor cells is likely to consti-

tute a fundamental evolutionary step in the development of

the forebrain.

Our results illustrate the importance that tangential

migration has on the development of thalamocortical pro-

jections but also suggest that this may be a general mech-

anism controlling axonal pathfinding in the developing

brain. In agreement with this idea, the development of sev-

eral major tracts in the forebrain appears to be preceded

by the tangential migration of an intermediate population.

One clear example is the formation of the lateral olfactory

tract (LOT), which transmits smell information from the

olfactory bulb to the piriform cortex. Formation of the

LOT correlates with the development of a subset of
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early-generated neurons designated as LOT cells, which

reach their final destination through tangential migration

(Tomioka et al., 2000) and have been suggested to guide

LOT axons (Sato et al., 1998). Furthermore, a widespread

network of early-born cells in the human forebrain forms

tangential links between intermediate zones of the thala-

mus, ganglionic eminence, hypothalamus, and cortical

preplate. This cellular network precedes the establish-

ment of axonal connectivity in the forebrain and may pro-

vide guidance cues necessary for the navigation of grow-

ing axons (Bystron et al., 2005). Although this is difficult to

test experimentally, this network of tangentially migrating

neurons may include populations of neurons similar to the

corridor cells described in our study, reinforcing the view

that this process constitutes a general mechanism con-

trolling the guidance of major axonal tracts in the forebrain

of mammals, including humans.

EXPERIMENTAL PROCEDURES

Mouse Lines

Wild-type and GFP-expressing transgenic mice (Hadjantonakis et al.,

1998), maintained in a CD1 or Swiss OF1 background, were used for

expression analysis and tissue culture experiments. HER4heart trans-

genic mice, which express a human ErbB4 (HER4) cDNA under the con-

trol of the cardiac-specific a-HMC (myosin heavy chain) promoter,

were maintained in a mixed C57Bl/6� 129/SvJ background. HER4heart

transgenic mice were mated to ErbB4 heterozygous mice (Gassmann

and Lemke, 1997) to generate ErbB4+/� HER4heart and ErbB4�/�

HER4heart mice, which were used in our experiments as control and

ErbB4 mutants, respectively. ErbB4�/� HER4heart mice are null for the

ErbB4 gene except in the heart (Tidcombe et al., 2003). CRD-Nrg1

heterozygous and homozygous mutant embryos were generated by

crosses of heterozygous parents maintained on a mixed C57Bl/6 �
129/SvJ background. Null and floxed alleles for the Nrg1 gene have

been described elsewhere (Meyer and Birchmeier, 1995). Foxg1Cre/+

mice (Hebert and McConnell, 2000), a knock-in of the Cre recombi-

nase, were used to obtain telencephalic Nrg1 mutant embryos.

Mash1 heterozygous mice (Guillemot et al., 1993) were maintained in

a mixed C57Bl6/DBA2 genetic background and crossed to produce

homozygous embryos. Animals were kept under Spanish, French,

and EU regulation.

In Situ Hybridization, Immunohistochemistry, and Axonal

Tracing

For in situ hybridization, brains were fixed overnight in 4% paraformal-

dehyde in PBS (PFA). 20 mm frozen sections or 80 mm free-floating vi-

bratome sections were hybridized with digoxigenin-labeled probes as

described before (Garel et al., 2003; Flames et al., 2004). For combined

fluorescent in situ hybridization and immunohistochemistry, fast Red

(Roche) was used as an alkaline phosphatase fluorescent substrate.

For immunohistochemistry, cultured slices/explants and embryos

were fixed in4% PFA at4ºC for 30minand from 6–12hr, respectively. Im-

munohistochemistry was performed on: (1) culture slices; (2) dorsal tha-

lamic explants, matrigel, or collagen pads; (3) 80 mm–100 mm free-floating

embryo vibratome sections; or (4) 12–20 mm cryostat sections. The fol-

lowing antibodies were used: mouse anti-b3-Tubulin 1/1000 (Promega);

rabbit anti-Calretinin 1/5000 (Swant); rabbit anti-GFP 1/1000 (Molecular

Probes); mouse anti-Islet1 39.4D5 1/100 (Developmental Studies Hybrid-

oma Bank); rabbit anti-Islet1/2 K5 1/5000 (a kind gift from T. Jessell);

rabbit anti-Nkx2-1 1/2000 (Biopat); and rat anti-L1 1/200 (Chemicon).

For axonal tracing, embryonic brains were fixed by perfusion and

overnight fixation in 4% PFA. Small DiI crystals (1,10-dioctadecyl 3,

3, 30, 30-tetramethylindocarbocyanine perchlorate; Molecular Probes)
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were inserted into the rostral part of the dTh thalamus after hemidis-

section of the brains. Brains were cut on a vibratome into 80–100 mm

sections and mounted in Aquamount. Hoechst or Sytox Green (Molec-

ular probes) was used for fluorescent nuclear counterstaining.

Slice Culture Experiments

Organotypic slice cultures of different levels of the embryonic mouse

telencephalon were prepared as previously described (Anderson

et al., 1997; Seibt et al., 2003). In Mash1 mutant experiments, only ros-

tral telencephalic slices were selected because they consistently

lacked a MGE corridor. Brain slices were cultured on polycarbonate

culture membranes (8 mm pore size; Corning Costar) or PET cell inserts

(1 mm pore size; Beckton-Dickinson) in organ tissue dishes containing

1 ml of medium (Neurobasal/B-27 [Life Technologies] or BME/HBSS

[Life Technologies] supplemented with glutamine, 5% horse serum,

and pen/strep). In these assays, TCAs begin to grow after 36 hr; slices

were cultured for 72–96 hr. Aggregates of COS7 transfected cells were

prepared by diluting transfected cells with matrigel (Flames et al.,

2004). Focal electroporation was performed as described before

(Flames et al., 2004).

Quantification of Axonal Length

Dorsal thalamic explants were dissected from E13.5 wild-type mice

and cultured in collagen, laminin, or matrigel for up to 96 hr. Explants

were (1) confronted with COS cells aggregates transfected with Gfp

or cotransfected with Ig-Nrg1 and Gfp; or (2) cultured with medium

supplemented with purified EGF-like domain from Heregulin b1 (0.1

mM, Peprotech). After fixation, dTh explants were subdivided into

four sectors, and the length of the 15 longest axons was measured

in every explant using Sigma Scan Pro software.

Supplemental Data

Supplemental Data include seven figures and can be found with this

article online at http://www.cell.com/cgi/content/full/125/1/127/DC1/.
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