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Abstract

Thalamocortical axons must cross a complex cellular terrain through the developing forebrain, and this terrain has to be
understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells and various
diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant
forebrain patterns has increased, so has our knowledge of the guidance mechanisms. Our aim here is to review recent
observations of cellular and molecular mechanisms related to: the growth of thalamofugal projections to the ventral telencephalon,
thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of
the pallial–subpallial boundary, and the growth towards the cerebral cortex. We shall review current theories for the explanation of
the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that
several mechanisms are involved at different stages of thalamocortical development, and each contributes substantially to the
eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual
developmental mechanisms.

General introduction

In 2011, the ‘handshake hypothesis’ celebrated its 21st birthday.
This hypothesis was formulated by Blakemore & Molnár (1990) as
a way to explain how ascending thalamic axons navigate to their
appropriate cortical targets with help from reciprocal descending
cortical axons (Molnár & Blakemore, 1995). It was based on in
vivo observations demonstrating an intimate anatomical relationship
between developing thalamic and early cortical axons (Molnár
et al., 1998a,b) and on in vitro findings that cortical explants from
different regions accept innervations from any region of the
thalamus (Molnár & Blakemore, 1991). It has been suggested that
a mechanism such as guidance from descending axons, which is
present in vivo but disrupted in explant culture, might be necessary
to achieve specific patterns of thalamocortical connectivity (Molnár
& Blakemore, 1991, 1999). The original formulation of the
hypothesis stated that ‘the descending and ascending axons each
pioneer the pathway through their own segment of the brain and,

after a ‘‘handshake’’ near the internal capsule, each may guide the
growth of the other over the distal part of its trajectory …’ (Molnár
& Blakemore, 1991).
However, this hypothesis was not supported by several observa-

tions. Some of the major objections are related to the separate route of
the thalamic and corticofugal projections observed in adults. Indeed,
the layer 6 and layer 5 projections take separate routes between any
one thalamic nucleus and its cortical areas, and and each component
involves complex crossing that appears to occur at different sites for
the thalamocortical and the corticothalamic components (Adams et al.,
1997). We have very limited information about these points in the
adult, and need more tracing studies at the single-cell level to resolve
them (Lozsádi et al., 1996; Grant et al., 2012). Furthermore, there is
great deal of difference between layer 5 and layer 6 cell axons that
target the core and the matrix thalamic neurons in the adult (Jones,
2001, 2007; Sherman & Guillery, 2005; Sherman, 2007). The
handshake hypothesis only accounted for the earliest corticofugal
projections and the thalamic projections, and their encounter in the
internal capsule at the time of crossing the pallial–subpallial bound-
aries (PSPBs). However, even these early interactions were questioned
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in several tracing studies (Miller et al., 1993; Bicknese et al., 1994),
and in dissociated cultures thalamic and cortical growth cones often
extended along axons of their own kind, and, after contacts between
cortical and thalamic fibres, in most cases growth cones collapsed and
retracted (Bagnard et al., 2001). However, the co-fasciculation of the
early thalamic and early corticofugal projections has been demon-
strated in mouse and rat (Molnár et al., 1998a,b), and the close
association of these fibres was apparent in the fascicles crossing the
embryonic cortical plate in the reeler mutant (Molnár et al., 1998b).
The relationship between thalamic and early corticofugal projections
has not been observed in organotypic cultures in their natural
environment.
Over the last 21 years, the handshake hypothesis has remained

influential because of its attractive simplicity, while being challenging
to test experimentally. As the thalamocortical projections traverse the
entire telencephalon, a better understanding of patterning within the
diencephalon and telencaphalon was required to reveal possible
guidance mechanisms. We now know that thalamic and early
corticofugal projections do not pioneer their own growth towards
the internal capsule; they are aided by other cells with projections (in
the prethalamus and internal capsule) or with migratory paths defined
by corridor cells. Nevertheless, the interactions between early
corticofugal projections and thalamic fibres at the PSPB are still
postulated to explain various phenotypes in mouse knockouts (Hevner
et al., 2002; López-Bendito & Molnár, 2003). Many of these
questions were not readily testable experimentally 21 years ago.
However, with the generation of mouse lines that express reporter
genes in selected cell groups (Jacobs et al., 2007; Piñon et al., 2009),
and the increased understanding of selective gene expression patterns
of subplate and other cell populations (Ayoub & Kostovic, 2009;

Hoerder-Suabedissen et al., 2009; McKellar & Shatz, 2009; Osheroff
& Hatten, 2009; Oeschger et al., 2012), we now have the chance to
revisit this issue. Moreover, our understanding of the molecular and
cellular aspects of telencephalic development is also increasing
rapidly, and with this background we can refine our questions on
axon guidance. We have come a long way since the handshake
hypothesis was first suggested but, despite new knowledge of many
additional mechanisms, the idea still retains considerable importance
for a particular stage and segment of thalamocortical development
(Fig. 1A and B).

Molecular patterning of the early thalamus

The thalamic region of the diencephalon comprises three functionally
distinct zones, the prethalamus, the thalamus proper, and the
pretectum, which extends in a rostrocaudal fashion (Larsen et al.,
2001; Puelles & Rubenstein, 2003). Traditionally, the thalamus was
described as having two major components, a ventral thalamus and a
dorsal thalamus, with the latter being the component that processes
and relays most sensory information from the periphery to the
cerebral cortex. This nomenclature is confusing, as the ventral
thalamus, in fact, lies rostral to the dorsal thalamus along the curved
axis of the neural tube. In recent years, in developmental studies it
has become increasingly common to use the terms prethalamus and
thalamus to describe the ventral thalamus and dorsal thalamus
respectively (Puelles & Rubenstein, 2003). A major advantage of this
prethalamus ⁄ thalamus nomenclature is that the regional descriptors
‘ventral’ and ‘dorsal’ can then be applied in their descriptive
meaning without confusion. Therefore, we adopt this nomenclature
here.

A B C

D E F

Fig. 1. The anatomy of the developing forebrain and the location of prethalamic cell groups providing guidance for TCAs in embryonic mouse brain. (A) A sagittal
view of the brain around E10.5 showing the pretectal, thalamic and prethalamic anlagen. (B) By E12.5, the telencephalic vesicles expand over the diencephalon; note
that the prethalamus (PT) lies anterior to the thalamus (T). These two structures are separated by the ZLI. (C) The appearance of the forebrain when cut as shown by
the red line in B at E14 (D) TCAs grow from the thalamus, through the prethalamus, and into the telencephalon. The prethalamus contains cells that express the
markers Pax6 and RPTPd (Tuttle et al., 1999). (E) An example of a section stained with an antibody for the Pax6 TF (E14). The positions of prethalamic groups of
cells proposed by Tuttle et al. (1999) to project to the thalamus and provide guidance to TCAs are shown. These groups were originally called VTh1 and VTh2, with
VTh1 split into a dorsal and a ventral domain. The dorsal domain of VTh1 expresses a low level of Pax6, whereas the ventral domain of VTh1 expresses a high level
of Pax6. (F) VTh2 does not express Pax6 but does express RPTPd.
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The mammalian thalamus is composed of dozens of morpholog-
ically and functionally distinct nuclei (Jones, 2007). Some of these
nuclei project topographically to specific areas of the cortex, relaying
sensory input from the periphery and playing a critical role in sensory
functions (Jones, 2001; Clascá et al., 2009; Sherman & Guillery,
2011). In contrast, the prethalamus, comprising the zona incerta,
reticular nucleus, and ventral lateral geniculate nucleus, does not
project to the cortex (Jones, 2007). The zona limitans intrathalamica
(ZLI) separates the prethalamus and the thalamus.

The thalamus develops from neural progenitor cells located within
the p2 domain of the alar plate of the caudal diencephalon between
embryonic day (E)10.5 and E16.5 (Angevine, 1970; Puelles &
Rubenstein, 1993, 2003). Although recent studies have identified
molecules that may influence the patterning of the diencephalon, it has
remained largely unknown how the distinct, postmitotic thalamic
nuclei emerge from discrete developmental units (Scholpp & Lums-
den, 2010). As occurs in the neocortex and other brain regions,
molecules secreted by signalling centres between tissue compartments
organize the patterning and growth of specific tissues. The ZLI
expresses members of the Sonic hedgehog (Shh) signal molecule
family, together with other secreted factors such as Wnts and
fibroblast growth factors (FGFs), and has been demonstrated to act
as a local organizer for thalamic development. Although Wnt
signalling is important for setting up the initial anteroposterior
regionalization (Salinas & Nusse, 1992; Murray et al., 2007; Quinlan
et al., 2009), it remains unknown whether this is directly required for
thalamic specification. FGF signalling has also been implicated in
organizing diencephalic development. FGF15 and FGF19 have been
shown to function downstream of Shh in the thalamus, and are
therefore implicated in some aspects of thalamic development (Miyake
et al., 2005; Gimeno & Martinez, 2007). On the basis of elegant in
utero manipulations in the thalamus, recent reports have added FGF8
activity to this scenario, and have shown that FGF8 activity controls
the patterning of thalamic nuclei (Kataoka & Shimogori, 2008).

Nevertheless, several studies have shown that Shh is the principal
requirement for cell fate specification during thalamic development.
Indeed, there are at least three Shh-dependent steps in patterning of the
thalamic anlage. These include the induction of specific sets of
transcription factors (TFs), through which Shh determines cell
specification during thalamic development (Scholpp & Lumsden,
2010). Moreover, elimination of Shh activity in both chick and
zebrafish results in the loss of genetic fate determinants and cell
identity in both the prethalamus and the thalamus (Kiecker &
Lumsden, 2004; Scholpp et al., 2006). A recent study has determined
that ectopic activation of the Shh signalling pathway induces the
expression of thalamic markers such as Gbx2, oligodendrocyte
transcription factor-2, neurogenin-2 (Neurog2) and oligodendrocyte
transcription factor-3 in the mouse pretectum, demonstrating that Shh
plays a crucial role in patterning thalamic progenitor domains (Vue
et al., 2009).

Transcriptional control of thalamocortical axon (TCA)
guidance

Several TFs are expressed in distinct but often overlapping patterns in
the thalamus, suggesting that they cooperate to control the specifica-
tion and differentiation of thalamic nuclei and cell types. One of the
first attempts to look at the cell-autonomous role of TFs in
thalamocortical pathfinding was the work by Pratt et al. (2000,
2002). They showed that the development of the thalamus is
compromised in Pax6) ⁄ ) embryos, and that the thalamus exhibits

abnormalities of differentiation and of the projection of axons (also see
Jones et al., 2002). Gbx2 is expressed broadly and early in the
thalamus (Bulfone et al., 1993), and later it is required for the
differentiation of a subset of nuclei and the development of TCA
projections (Miyashita-Lin et al., 1999; Jones et al., 2002). A recent
study has demonstrated that Gbx2 plays a cell-non-autonomous role in
controlling the segregation of postmitotic thalamic neurons from the
neighbouring brain structures that do not express Gbx2 (Chen et al.,
2009). Another key piece of work on the transcriptional control of
TCA pathfinding came from the study by Seibt and colleagues,
demonstrating that the basic helix–loop–helix TF Neurog2 cell-
autonomously specifies the projection of thalamic neurons to frontal
cortical areas (Seibt et al., 2003). Neurog2-knockout mice are
characterized by a targeting shift in the TCA projections that occurs
initially in the ventral telencephalon (VTel) (Seibt et al., 2003),
suggesting that Neurog2 regulates the guidance receptors in these
axons, which read ventral telencephalic cues. However, to date, no
downstream targets of Neurog2 have been identified.
It remains unclear how distinct pools of thalamocortical projecting

neurons are topographically specified, and which TFs regulate the
growth of their axons (López-Bendito & Molnár, 2003; Shimogori &
Grove, 2005; Price et al., 2006). TFs expressed in postmitotic neurons
are responsible for specifying neuronal identity and for activating
specific axon guidance programmes in other neuronal pathways.
Genetic studies in mice have demonstrated the role of the LIM
homeodomain (LIM-HD) proteins in determining the identity of motor
neurons (Jurata et al., 2000; Kania et al., 2000; Lee & Pfaff, 2001;
Kania & Jessell, 2003). Moreover, a specific combination of TFs from
the LIM-HD family regulates the topographic targeting of distinct
pools of axons to specific muscles in the limb mesenchyma (Sharma
et al., 1998; Kania et al., 2000). In recent years, several candidate
genes have been identified as potential downstream effectors of these
TFs. For example, Lim1 expression in lateral motor column neurons in
the spinal cord regulates the expression of the tyrosine kinase EphA4,
a protein that is essential for the final targeting of axons to the limb
(Kania & Jessell, 2003). Similarly, the transcription factor Zic2
regulates midline crossing by retinal axons in conjunction with
another member of the Eph family, EphB1 (Lee et al., 2008; Garcı́a-
Frigola & Herrera, 2010). These molecular pathways may also be
important for thalamocortical pathfinding.
In the thalamus, the Lhx2 TF is a member of the LIM-HD family of

proteins, and is strongly expressed during development (Retaux et al.,
1999; Nakagawa & O’Leary, 2001). Severe thalamocortical pathfind-
ing defects have been described in Lhx2 null mice (Lakhina et al.,
2007), implicating this TF in the guidance of these axons. However,
the death of these mice at early embryonic stages precludes in vivo
studies of the role of Lhx2 in later aspects of TCA connectivity. As
Lhx2 is also expressed in other forebrain areas, such as the neocortex,
it is essential to restrict the loss of Lhx2 to thalamic neurons in order to
precisely determine the role of this TF in thalamocortical develop-
ment. Disruption of Lhx2 regulatory activity only in thalamic neurons
leads to axonal pathfinding defects in TCAs, with fewer axons
ultimately reaching their cortical targets (Marcos-Mondéjar et al.,
2012).
Mice deficient in Robo1, Robo2 or both show prominent defects in

TCA guidance during development, including abnormal axonal
invasion of the hypothalamus (Andrews et al., 2006; López-Bendito
et al., 2007). Overexpression of Lhx2 in rostral and intermediate
thalamic neurons by in utero electroporation results in the abnormal
invasion of the hypothalamus by electroporated axons (Marcos-
Mondéjar et al., 2012). Moreover, this study demonstrated that Lhx2
is a direct repressor of Robo1 and Robo2 receptors, as their thalamic
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expression is altered in the absence of this TF. The list of TF pathways
involved in the early differentiation of the thalamus and the early
guidance of TCAs is impressive, but it is most probably far from
complete.

Guidance from the thalamus to the subpallium

The role of prethalamic and ventral telencephalic projections to
the thalamus in the early guidance of TCAs

The molecular mechanisms that guide the first axons from the
thalamus and into the prethalamus, which they must cross to access the
border between the diencephalon and the telencephalon, are poorly
understood. Coordinated control of the polarity of newly differenti-
ating thalamic neurons might ensure that the first axonal extensions
grow towards the boundary of the thalamus and prethalamus, but it is
also likely that projections from the prethalamus to the thalamus
(PTh–Th; Appendix and Table 1) and projections from the VTel to the
thalamus (VTel–Th) provide guidance (Fig. 2). A study by Métin &
Godement (1996) in hamsters showed that as axons grow from the
thalamus they intermingle with reciprocal projections from the
prethalamus (PTh–Th) and ventral telencephalon (VTel–Th) to the
thalamus. Equivalent prethalamic neurons were subsequently discov-
ered in rat embryos (Molnár et al., 1998a; Molnár & Cordery, 1999),
in a region described by Mitrofanis (1992) as the perireticular nucleus
(Fig. 2). Braisted et al. (1999) also examined this region in embryonic
mice, and suggested that VTel–Th neurons project axons into the
thalamus at around the time at which the first TCAs reach the VTel
(E13–E14). These authors suggested that the VTel–Th neurons
probably belong to the globus pallidus (GP) rather than being
perireticular cells. This suggestion stemmed from the fact that
perireticular cells were retrogradely labelled from the thalamus in
postnatal but not embryonic rats (Mitrofanis & Baker, 1993) and
ferrets (Mitrofanis, 1994a,b). Despite these and other differences in the
details of the various studies, the spatial and temporal features of the
axonal projection of the VTel–Th neurons are consistent with the idea
that this axonal projection, and possibly the cell bodies themselves,
may act as a scaffold to guide TCAs through the developing

prethalamus and towards the diencephalic–telencephalic border or
other axons in the opposite direction, or perhaps both. Consistent with
this hypothesis, in Ascl1) ⁄ ) and Pax6) ⁄ ) embryos this population of
ventral telencephalic VTel–Th cells appears to be missing, and TCAs
fail to extend into the VTel (Tuttle et al., 1999; Pratt et al., 2002)
(Fig. 3). There are decreases in the number and displacement of these
cells in Lhx2) ⁄ ) and Emx2) ⁄ ) mutants, respectively, and these are
associated with guidance defects of TCAs (Tuttle et al., 1999; Bishop
et al., 2000, 2003; López-Bendito et al., 2002; Lakhina et al., 2007).
A study by Tuttle et al. (1999) further subdivided the PTh–Th

projections into two groups. Tuttle et al. (1999) named these VTh1
and VTh2, with VTh1 split into a dorsal and a ventral domain. The
location of these groups is shown in Fig. 1E and F. Their nomencla-
ture is, of course, now confusing, because VTh stands for ventral
thalamus, and as ‘prethalamus’ is preferred to ‘ventral thalamus’, they
might be better renamed PTh–Th1 and PTh–Th2. The dorsal domain
of VTh1 ⁄ PTh–Th1 expresses a low level of the TF Pax6, whereas the
ventral domain of VTh1 ⁄ PTh–Th1 expresses a high level of Pax6;
VTh2 ⁄ PTh–Th2 does not express Pax6 (Fig. 1E). There is much less
functional information on the possible roles of the PTh–TH groups in
TCA guidance than for the VTel–Th cells.
In the case of both the PTh–Th and VTel–Th groups of axons, an

association between the loss of these cells and TCA pathfinding
defects in mutants cannot be taken to imply causation. At present, we
know very little about these projections: their embryological origins,
molecular identities, fates and potential roles in TCA guidance remain
to be determined. We do not have the tools to interfere selectively with
their function, as molecular markers that distinguish them have not
been identified.

Repulsive activity from the hypothalamus

As thalamic axons traverse the prethalamus at E11–E13 in the mouse
or E12–E14 in the rat, they grow in the direction of the hypothalamus
before they turn laterally towards the internal capsule. Tuttle et al.
(1999) showed cells in the hypothalamus with projections to the
thalamus, but, clearly, these projections do not succeed in drawing the

Table 1. Suggested nomenclature for guidepost neurons that cross the early diencephalic and telencephalic subdivisions. For further description see appendix.

Cell group Synonymous name References

Neurons with projections
from the prethalamus to the
thalamus (PTh–Th)

TRN Ventral thalamus Mitrofanis & Guillery (1993)
Métin & Godement (1996)
Molnár et al. (1998a,b); Molnár & Cordery (1999)
Tuttle et al. (1999)
Mitrofanis (1992) as the perireticular nucleus. Braisted et al.
(1999)

Neurons with projections
from the VTel to the
thalamus (VTel–Th)

Perireticular cell Perireticular nucleus
Internal capsule guidepost cells

Mitrofanis & Guillery (1993)
Métin & Godement (1996)
Molnár et al. (1998a,b); Molnár & Cordery (1999)
Tuttle et al. (1999)
Mitrofanis (1992) as the perireticular nucleus. Braisted et al.
(1999)

Neurons with projections
from the VTel to the cortex
(VTel–Cx)

Nucleus basalis Métin & Godement (1996) and Adams
& Baker (1995) described numerous cells from the
pallidum with projections to the cortex; they associated
these labelled cells with the perireticular nucleus
(Admas and Baker, 1995)

Adams & Baker (1995)
Coleman & Mitrofanis (1999)
Métin & Godement (1996)

Corridor cells The adult equivalent of these cells is not clear. We do
not know the proportions of the surviving cells. The
distinction between corridor cells and other populations
of guidepost neurons is not fully resolved.

López-Bendito et al. (2006); Bielle et al. (2011a)
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thalamic axons to the hypothalamus. On the contrary, thalamic axons
turn very sharply away from the hypothalamus into the internal
capsule in the direction of the diencephalic–telencephalic border.
Several studies have shown that: (i) the hypothalamus expresses high
levels of Slits, which are generally chemorepellent for growing axons;
(ii) hypothalamic explants repel thalamic axons in explant cultures;
and (iii) in both Slit2) ⁄ ) and Slit1) ⁄ );Slit2) ⁄ ) mutants, a large
number of thalamic projections fail to enter the telencephalon, and
instead descend into the hypothalamus (Braisted et al., 1999, 2009;
Bagri et al., 2002; López-Bendito et al., 2007; Bielle et al., 2011b).
These findings provide quite compelling evidence that thalamic axons,
which express Robo receptors through which Slits signal, deviate
away from the hypothalamus and across the diencephalic–telence-
phalic boundary, owing to Slit-mediated repulsion.

The role of tangentially migrating ‘corridor’ cells in
delineating the internal path of TCAs

More recently, a distinct population of guidepost cells has been
identified that controls the precise pathfinding of TCAs along an
internal trajectory within the subpallium (López-Bendito et al., 2006).
These cells are GABAergic neurons that migrate tangentially from the
lateral ganglionic eminence (LGE) into the medial ganglionic
eminence (MGE) and form a cellular ‘corridor’ between the prolif-
erative zones of the MGE and the GP (Fig. 2; Appendix; Table 1)
(López-Bendito et al., 2006). Accordingly, they are located in the

MGE, but express molecular markers of LGE-derived neurons, such
as Islet1, Ebf1, and Meis2, and do not express MGE molecular
markers such as Nkx2.1. These neurons, named ‘corridor cells’,
migrate from E11.5 to E14 in the superficial mantle of the subpallium
in a ventral direction, superficially to the large stream of MGE-derived
interneurons that migrate towards the cerebral cortex. In vitro analysis
in embryonic brain slices has shown that corridor cells constitute a
permissive territory for the internal growth of TCAs through MGE-
derived cell groups, which are otherwise non-permissive for TCAs.
Although the factors controlling the non-permissive activities of
MGE-derived territories remain to be determined, corridor cells were
shown to express a membrane-bound isoform of neuregulin-1. TCAs
express the neuregulin-1 receptor ErbB4, and gain-of-function exper-
iments in embryonic slices as well as in telencephalic conditional
neuregulin-1 mutants and constitutive ErbB4 mutants indicate that this
signalling pathway regulates the pathfinding of TCAs throughout the
corridor. These findings show that the migration of corridor neurons
generates a neuregulin-1-permissive domain that is essential for the
internal pathfinding of TCAs within the subpallium. Thus, corridor
cells are immature neurons that act via contact or a short-range activity
to position an axonal tract, and constitute genuine guidepost cells.
Interestingly, these corridor cells are conserved in diverse species, and
show distinct positioning that could underly evolutionary changes in
the positioning of TCAs in the subpallium (Bielle et al., 2011a).
What is the relationship between corridor cells and perireticu-

lar ⁄ internal capsule cells? These two proposed guidepost cell
populations are not located in exactly the same regions, as some
perireticular cells are in the prethalamus or in its vicinity, whereas
corridor cells are in the MGE (Table 1; Fig. 2). Accordingly,
perireticular cells have been proposed to regulate the entrance of
TCAs into the subpallium (Métin & Godement, 1996; Molnár et al.,

A B

Fig. 3. Evidence that Pax6 plays a role in corridor formation. (A) Normally,
Pax6-expressing cells (purple) are located ventral to the corridor ⁄ developing
internal capsule in the MGE; those located laterally form the lateral cortical
stream migrating from the PSPB (arrow). Islet1-expressing cells (green)
migrate from the progenitor layer of the LGE (arrow) to form the corridor
through which TCAs grow (arrow). (B) In conditional mutant embryos with
selective reduction of Pax6 in specifically the VTel but not in the thalamus or
cortex, there are fewer Pax6-expressing cells ventral to the corridor than normal
(other populations of Pax6-expressing cells outside the region of Pax6 deletion
are not shown, as they are not affected). Cells from the LGE migrate to form a
corridor that is abnormally broad, with a lower peak density of Islet1-
expressing cells; many Islet1-expressing cells stray into the area depleted of
Pax6 expression. Many thalamic axons fail to enter this abnormal corridor, or
exit it along its length. Data are taken from Simpson et al. (2009). PT,
prethalamus, T, thalamus.

A B

C D

Fig. 2. The position of various cell populations guide thalamic axons. (A and
B) The various subdivisions in the diencephalon (ET, epithalamus; HT,
hypothalamus; PT, prethalamus, T, thalamus; TE, thalamic eminence) and
telencephalon (Ctx, cerebral cortex; SP, subpallium; Str, striatum; VP, ventral
pallium) and their boundary (DTB, diencephalic–telencephalic boundary). (C
and D) The early connectivity in the telencephalon and diencephalon.
Prethalamic (PTh–Th) and ventral telencephalic (internal capsule, VThel–Th)
cells with thalamic projections (purple and yellow, respectively) are instru-
mental in early thalamic axon guidance. The panel in C illustrates the migration
of the corridor cells and their interactions with the thalamocortical projections.
Corridor cells (light blue) originate from the LGE at E12, and migrate
tangentially towards the diencephalon, where they form a permissive ‘corridor’
for the thalamic projections (red) to navigate them through the internal capsule.
Modified from López-Bendito & Molnár (2003) and Hanashima et al. (2006).
Hp, hippocampus; LV, lateral ventricle.
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1998a,b; Molnár & Cordery, 1999; Tuttle et al., 1999), whereas
corridor cells orient the internal pathfinding of TCAs inside the MGE
(López-Bendito et al., 2006). However, some back-labelled neurons
from the thalamus are also found in the corridor and LGE, raising the
possibility that perireticular and corridor cells may be related to some
extent (Fig. 2). Further analyses are needed for the determination of
the molecular identity of back-labelled cells in the internal capsule,
and thereby reveal whether some corridor cells may settle in that
region and act by axon-mediated contact.

Guidance of TCAs across the VTel

The subpallium is a main intermediate target for TCAs

In contrast to the hypothalamus, the subpallium attracts TCAs and
corticofugal axons, and constitutes a main intermediate target for
these projections (Métin & Godement, 1996; Braisted et al., 1999;
Garel & Rubenstein, 2004). Analyses of mutant mice in which the
regionalization and development of the subpallium has been affected
(Marı́n et al., 2002) have started an assessment of the relative
importance of the LGE and MGE in corticofugal and TCA
pathfinding. In particular, mutations affecting the development of
the LGE, such as in Ebf1 or Gsh1) ⁄ );Gsh2) ⁄ ) double mutants,
severely impair TCA navigation, in contrast to mutations that perturb
MGE development, such as in Nkx2.1 mutants (Garel et al., 1999;
Sussel et al., 1999; Marin et al., 2002; Yun et al., 2003). As
previously mentioned, in vitro experiments in embryonic brain slices
have revealed that the GP and the MGE proliferative zones exert
repulsive activities that are likely to channel TCAs along an internal
route (López-Bendito et al., 2006).
In parallel with the identification of the structures regulating TCA

pathfinding through the subpallium, several studies have been
conducted to determine the molecular nature of the guidance
mechanisms involved. In particular, analyses of mice carrying
mutations for guidance cues or their receptors have implicated
netrin-1, Slit1 and Slit2, and their receptors Robo1 and Robo2, as well
as semaphorin 6A in the general pathfinding of TCAs in the
subpallium (Braisted et al., 2000, 2009; Leighton et al., 2001; Bagri
et al., 2002; Bonnin et al., 2007; López-Bendito et al., 2007; Powell
et al., 2008; Little et al., 2009). In addition, members of the
protocadherin family were shown to play essential roles in TCA
guidance and internal capsule formation (Tissir et al., 2005; Uemura
et al., 2007; Zhou et al., 2008, 2009). In particular, Celsr3 is a seven-
pass cadherin orthologue of Drosophila flamingo, which acts both in
the planar cell polarity pathway and in relation to neurite outgrowth,
and is widely expressed in the mantle of the telencephalon and
forebrain. Its specific experimental inactivation in the subpallium and
prethalamus severely impairs the formation of the thalamocortical
connections: TCAs stall in the ventral subpallium just after crossing
the telencephalic–diencephalic boundary, whereas corticofugal axons
stall after crossing the PSPB in the proximal part of the LGE (Zhou
et al., 2008, 2009). These studies revealed an absolute requirement for
Celsr3 expression by an intermediate target that acts at short range,
and also demonstrated an in vivo function of these intermediate
targets. Constitutive mutants for the Frizzled3 gene, which, in
Drosophila, participates in the planar cell polarity pathway with
flamingo, have a very similar phenotype in the pathfinding of the
internal capsule, suggesting that the two genes also cooperate in mice
during this major axonal wiring event (Wang et al., 2002, 2006).
Collectively, these experiments show that the subpallium is a major

intermediate target for TCAs, and that the LGE is particularly involved
in their guidance. At the molecular level, a series of secreted and

transmembrane molecules expressed in the subpallium contribute to
TCA pathfinding, and their inactivation in mice has provided
definitive evidence for the in vivo requirement for this intermediate
target.

Molecular determinants in the subpallium specify intermediate
sorting of TCAs

As TCAs travel internally through the subpallium, they diverge
rostrocaudally along a fan-like structure, allowing distinct thalamo-
cortical ⁄ thalamofugal axons, which are already segregated inside the
tract, to navigate towards different cortical areas. Analyses of mutants
in which the development of the subpallium or thalamus has been
affected have revealed that this initial topography is largely indepen-
dent of cortical regionalization; instead, it is chiefly controlled by
information contained within the subpallium (Garel et al., 2002, 2003;
Dufour et al., 2003; Seibt et al., 2003; Shimogori et al., 2004). At the
molecular level, initial topographic sorting of pre-segregated TCAs
inside the internal capsule is mediated by countergradients of distinct
ligand–receptor systems expressed by TCAs and cells in the VTel
(Fig. 4). Key determinants of initial TCA divergence include ephri-
nAs ⁄ EphAs, netrin-1 ⁄ DCC ⁄ Unc5a–c, class III semaphorins
(Sema3s) ⁄ neuropilins (Npns), and the L1 family of cell adhesion
molecules (L1-CAMs), which specify sorting of distinct TCA
contingents (Vanderhaeghen & Polleux, 2004).
Appropriate targeting of motor thalamic axons from the ventrolat-

eral (VL) nucleus of the dorsal thalamus to the primary motor cortex
(M1) is enabled by repellent TCA guidance in the subpallium
mediated by countergradients of ephrinA5 ⁄ EphAs. TCAs in the
rostral dorsal thalamus express high levels of EphA4 and EphA7
receptors, and are repelled from a high-caudolateral to low-rostrome-
dial gradient of ephrinA5 expressed in the subpallium (Dufour et al.,
2003; Egea et al., 2005; Torii & Levitt, 2005) (Fig. 4). In mice
deficient in EphA4, EphA7, or both ephrinA5 and EphA4, contingents
of VL axons become shifted caudally in the subpallium and misproject
to the primary somatosensory cortex (S1) (Dufour, Seibt et al., 2003;
Dufour et al., 2006). EphrinA5 knockout mice also show a caudal
misprojection of a portion of afferents from the laterodorsal thalamic
nucleus to S1 (Uziel et al., 2002). In vitro studies indicate that
ephrinA5 can act as a repellent (Gao et al., 1998) or attractant cue for
different populations of thalamic and cortical axons (Castellani et al.,
1998; Mann et al., 2002). Within the cortex, deletion of ephrinA5
decreases the arborization of thalamic axons (Uziel et al., 2008), and
may promote compensatory dendritic branching of thalamocortical
recipient cells, as shown for spiny stellate cells in layer 4 of S1
(Guellmar et al., 2009). Netrin-1 provides a counterforce to ephrinA5-
induced TCA repulsion, playing a dual role in attracting rostral TCAs
and repelling caudal TCAs (Braisted et al., 2000; Bonnin et al., 2007;
Powell et al., 2008) (Fig. 4). The opposing responses are mediated by
different expression levels of the netrin-1 receptors DCC (deleted in
colorectal carcinoma) and Unc5a,c on TCAs, and modulated by
serotonin (Bonnin et al., 2007).
L1-CAMs [L1, close homologue of L1 (CHL1), and neuron-glial

related cell adhesion molecule (NrCAM)] are immunoglobulin-class
axon guidance molecules that regulate pathfinding of TCAs by
mediating repellent responses to gradients of ephrinAs and Sema3A–
G (Maness & Schachner, 2007). Sema3s are secreted ligands that
promote axon repulsion or attraction by binding Npn-1 ⁄ 2 receptors.
These receptors recruit plexinA (PlexA) subunits 1–4 and stimulate
Rac1-GTPase, an activity that is intrinsic to PlexAs (Tran et al., 2007;
Pasterkamp & Giger, 2009). In turn, Rac1 is capable of inducing
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repellant responses in growth cones by promoting rearrangements of
actin filaments. Deletion of CHL1 or Npn-1 in mice causes a caudal
shift of axon contingents from the ventrobasal (VB) complex within
the subpallium, resulting in mistargeting to the primary visual cortex
(V1) (Gu et al., 2003; Wright et al., 2007). CHL1 normally binds
Npn-1 to enable repellent guidance from the caudal-high gradient of
Sema3A in the VTel, so that TCAs correctly target S1 (Wright et al.,
2007). Sema3A-induced growth cone collapse depends on binding of
ezrin–radixin–myosin cytoskeletal adaptors to the CHL1 cytoplasmic
domain (Mintz et al., 2008; Schlatter et al., 2008). In an analogous
mechanism, NrCAM and Npn-2 direct TCA contingents from more
rostral thalamic nuclei [ventroanterior (VA) ⁄ ventrolateral (VL)] to M1
(Demyanenko et al., 2011a). NrCAM associates with Npn-2, but not
Npn-1, to mediate growth cone collapse induced by Sema3F, which is
expressed in a caudal-high gradient in the subpallium. Semaphorin 6A
also functions in the thalamocortical projection, enabling dorsal lateral
geniculate nucleus axons to turn within the VTel to enter the neocortex
(Leighton et al., 2001). Functional consequences of mistargeting to
incorrect cortical areas have been revealed in NrCAM null mice,
which display impaired visual acuity and impaired binocular interac-
tions, owing to impaired V1 cortical responses (Demyanenko et al.,
2011a).

L1, like CHL1 (Wright et al., 2007), binds the Npn-1 required for
growth cone collapse induced by Sema3A (Castellani et al., 2000).
Unlike deletion of CHL1, deletion of L1 in mice does not alter area-
specific topographic targeting of TCAs. However, when both L1 and

CHL1 are deleted in mice, a more severe phenotype is observed
(Demyanenko et al., 2011b), in which TCAs from both rostral
(VA ⁄ VL) and VB nuclei mistarget to V1. The double mutant
phenotype suggests a cooperative role for L1 and CHL1 in mediating
repellent responses to Sema3A or to ephrinA5 (Demyanenko et al.,
2011b). L1 and CHL1 coimmunoprecipitate with the principal
ephrinA5 receptors in the dorsal thalamus (EphA3, EphA4, and
EphA7), and mediate ephrinA5-induced growth cone collapse
(Demyanenko et al., 2011b). Why does genetic deletion of CHL1
(Wright et al., 2007), NrCAM (Demyanenko et al., 2011a), or
L1 ⁄ CHL1 (Demyanenko et al., 2011b), or of their interacting partners
Npn-1 ⁄ 2 and Sema3A ⁄ 3F, result in caudal misprojection of TCAs?
Caudal misprojection of TCAs also occurs in mouse mutants deficient
in EphA4 ⁄ ephrinA5 (Dufour et al., 2003), netrin-1 (Powell et al.,
2008), and semaphorin 6A (Little et al., 2009). One hypothesis is that
caudal mistargeting of TCAs in the absence of caudal repellent cues
may result from gradients of unidentified rostral repellents or caudal
attractants in the VTel.
The complex patterns of expression of semaphorins, ephrins,

netrins, their receptors, and L1-CAMs may serve to precisely direct
TCA subpopulations to cortical targets (Wright et al., 2007; Demy-
anenko et al., 2011a,b). These ligand–receptor complexes may be
localized in distinct subdomains of the growth cone membrane. Within
these growth cone subdomains, downstream signalling from activated
receptors may impinge asymmetrically on actin filaments (Zhang
et al., 2003; Marquardt et al., 2005; Burnette et al., 2008), resulting in
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Fig. 4. Scheme of TCA trajectories from thalamic nuclei through the subpallium ⁄ VTel to distinct neocortical areas. Upper right panels: schematic diagram illustrating
multiple carbocyanine dye placements in the cerebral cortex positioned along an anterioposterior axis, showing the arrangements of backfilled dorsal thalamic neurons in
a mediolateral fashion. The schematic panels indicate the appropriate sections with labelling. The right hemisphere is enlarged to illustrate some of the molecular
mechanisms that are involved in guidance of the thalamic axons across the thalamic eminence, corridor and subpallium to reach the appropriate regions in the cortex.
TCAs from different nuclei in the thalamus (VA ⁄ VL, ventroanterior ⁄ ventrolateral nuclei; VB, ventrobasal complex; dLGN, dorsal lateral geniculate nucleus) emerge at
the thalamic eminence en route to the neocortex, and are sorted within a corridor of Islet1-positive cells in the subpallium ⁄ VTel along the rostrocaudal axis (E13.5–
E15.5 in the mouse). Within the corridor, TCAs expressing different combinations of axon guidance cue receptors (listed in the box within the dorsal thalamus) are
guided by gradients of repellent and attractant cues (ephrinA5, netrin-1, Sema3A, Sema3F, and Slit1), influenced by neuregulin-1 and serotonin (5-HT, 5-
hydroxytryptamine). In the ventral pallium, with the exception of Slit1, similar gradients are present. The thalamic axons target cortical areas that will specialise to M1,
S1, and V1, at the time of their arrival and accumulation below the putative cortical areas their entry to the cortex is regulated by the subplate. Some of the various
gradients in the subplate and cortical plate are listed (FGF8, Sp8, COUPTF1, Pax6, and Emx2). Within the neocortex, additional molecular cues and activity-dependent
mechanisms promote the final synaptic targeting of TCAs. This simple initial topography can be considerably rearranged at the time of entry to the cortical plate.
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localized retraction of filopodia and lamellipodia (Schaefer et al.,
2008), thus specifying directional navigation. An important goal for
the future will be to identify the intracellular signalling pathways
activated by each guidance receptor system at the crucial choice points
along the thalamocortical pathway. Furthermore, it is likely that many
more axon guidance cues and receptors will cooperate to guide TCAs
at various decision points en route to the cortex.
Although these guidance cues were initially proposed to act mainly

in the LGE-derived striatum, in vitro experiments in slices have
revealed that corridor neurons probably act proximally to the striatum
in orienting TCAs along the rostrocaudal axis, where many of the
guidance cues are also expressed (Bielle et al., 2011a). In vivo and in
vitro analyses of Slit1 and Robo1 ⁄ 2 mutant mice have confirmed that
localized cues in the corridor act to orient pathfinding of intermediate
and rostral axons, indicating that, in this system, guidepost corridor
neurons participate not only in the internal navigation of TCAs, but
also in the formation of their fan-shaped topographic arrangement
within the intermediate target (Bielle et al., 2011a,b).
Further studies investigating potential crosstalk among the different

guidance signalling pathways, as well as the molecular mechanisms
involved, may provide decisive information for understanding how
TCAs are initially topographically ordered. Furthermore, how this
intermediate subpallial topography interacts with positional informa-
tion located in the neocortex to control the final spatial arrangement of
TCAs remains to be explored. In the adult, the topographic order is not
based on a single principle (outlined in Fig. 4); many thalamocortical
interconnections involve mirror reversals between the thalamus and
cortex (Adams et al., 1997), suggesting substantial rearrangements at
a later stage, closer to the termination sites. There are examples of
such rearrangements in the adult (see Nelson & LeVay, 1985;
reviewed by Grant et al., 2012).

How TCAs enter the cerebral cortex

The PSPB, which TCAs must cross to reach the cortex, is first
established as a gene expression boundary. By the age at which thalamic
axons approach the pallium (E13 for mouse; see Fig. 2C), the PSPB has
developed a striking radial glial fascicle that runs across the trajectory of
TCAs and has a high density of cells, including those of the lateral
cortical stream, which migrate across the path of TCAs (Chapouton
et al., 2001; Carney et al., 2006, 2009). It has been suggested that these
features make this region relatively hostile to the passage of thalamic
axons and that descending corticofugal axons from the cortex interact
with ascending thalamic axons and assist them across this region
(Molnár et al., 1998a,b; Molnár & Butler, 2002). The pioneer
corticofugal axons arrive at the PSPB before the thalamic axons, and
tracing studies suggest that at least the earliest cohort of these fibres can
cross the PSPB without thalamic axons. It is possible that a breakdown
of this interaction explains TCA defects in some strains of mutant mice
(Hevner et al., 2002; Jones et al., 2002; López-Bendito et al., 2002;
López-Bendito & Molnár, 2003; Dwyer et al., 2011).
Recently, this hypothesis has been tested with conditional muta-

genesis to assess the effects of blocking corticofugal axonal devel-
opment without disrupting the thalamus, subpallium or PSPB in the
Emx1Cre;APCloxP ⁄ loxP mutants (Chen et al., 2012). It was found
that, whereas thalamic axons still traversed the subpallium in
topographic order, they did not cross the PSPB (Fig. 5B). Normal
cortex and mutant cortex stimulate the growth of axons from the
thalamus by equal amounts in culture experiments (Fig. 5C). This
suggests that the inability of thalamic axons to cross the PSPB in
Emx1Cre;APCloxP ⁄ loxP mutants is unlikely to be explained by long-

range chemorepulsion by mutant cortex. By providing evidence
against alternative explanations and by showing that replacement of
mutant cortex with control cortex restored corticofugal efferents and
allowed thalamic axons from conditional mutants to cross the PSPB
(Fig. 4D), this work provided the most compelling evidence to date
that cortical efferents are required to guide TCAs across the PSPB.
The molecular mechanisms involved require further investigation.
These studies are aided by our better understanding of embryonic
subplate and thalamus gene expression patterns (Osheroff & Hatten,
2009; Oeschger et al., 2012).

Guidance of TCAs within the cortex

Early topography during accumulation below the cortical plate

Thalamocortical projections arrive at the cerebral cortex prior to the
birth of the majority of cortical neurons and before their migration is
complete (Rakic, 1976; Shatz & Luskin, 1986). At this stage, the peak
of cerebral cortical neurogenesis and neural migration, the cortical
germinal and intermediate zones undergo highly dynamic changes.
Meanwhile, the cortical plate is increasing in thickness, and new cells
are added to it in an inside-first and outside-last fashion. The subplate
zone, which is generated earliest, can be considered to be a relatively
stable platform in the developing cortex during this period (Marin-
Padilla, 1971; Lund & Mustari, 1977; de Carlos & O’Leary, 1992).
The subplate zone contains postmigratory, mature neurons that are the
first to express neuronal markers and develop functional synapses
(Molliver & Van der Loos, 1970; Kostovic & Rakic, 1990; Friauf &
Shatz, 1991; Higashi et al., 2001). The ingrowing thalamocortical
projections start to accumulate in this zone for considerable periods,
depending on the species (Rakic, 1976; Shatz & Luskin, 1986;
Catalano et al., 1991; Molnár et al., 1998a,b). Thalamic afferents
overshoot their targets and develop transient side-branches on more
proximal segments of their path, through delayed branching (Naegele
et al., 1988). These side-branches within the intermediate zone and
subplate extend over considerable distances, and have been considered
to be the anatomical substrate for the rearrangements of cortical maps
during both experimentally induced and normal development (Molnár
et al., 2000; Shimogori & Grove, 2005). However, the mechanisms
that deliver the thalamic projections and initiate their accumulation
below the cortical plate are considered to be largely autonomous (Price
et al., 2006). Studies in mice with the SNARE complex knocked out
suggest that the early ingrowth of the thalamic axons does not depend
on early neuronal communication transmitted through regulated or
spontaneous vesicular release mechanisms (Molnár et al., 2002;
López-Bendito & Molnár, 2003; Blakey et al., 2012, in this issue),
but that, after this initial entry, an activity-dependent mechanism may
start to dominate (Catalano & Shatz, 1998; Molnár et al., 2003; Uesaka
et al., 2006, 2007; Yamada et al., 2010).

Areal differences in the topographic organization after thalamic
fibre entrance to the cortex

Thalamic organization changes during the process of normal devel-
opment, and it can be altered through: (i) manipulations of the early
guidance mechanisms in the subpallium; (ii) manipulations of the
early cortical regionalization; or (iii) changing the flow of sensory
input from the sense organs.
Although the subpallium controls the early guidance of TCAs,

cortical regionalization, which is controlled by the morphogen FGF8
and gradients of TFs (Pax6, COUP-TFI, Emx2, and Sp8), is sufficient
to reorient the thalamocortical map within the neocortex (Garel et al.,
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2003; Rash & Grove, 2006; O’Leary & Sahara, 2008). The
deployment and initial entry of thalamocortical projections to the
subplate zone is considerably modified as the TCAs enter the cortical
plate in cortical areas, such as V1 of rodents (Naegele et al., 1988;
Krug et al., 1998; Ravary et al., 2003). There are areal differences in
the density, topographic precision and maturity of thalamocortical
projections. Whereas TCAs undergo significant rearrangements in the
cortex after entry into V1 of rodents, in the rodent S1 the topography
is essentially established immediately after entry (Agmon et al., 1993,
1995). The period during which the thalamocortical projections can be
rearranged after sensory manipulations shows considerable variation.
Altering early cortical gene expression patterns of FGF8 imposes
shifts or even two opposing cortical gradients, with corresponding
shifts and duplications of thalamocortical projections (Shimogori &
Grove, 2005), whereas changes in Pax6 gradients fails to elicit
substantial changes in thalamocortical topography (Piñon et al.,
2008). FGF8 gradient alterations can lead to duplication of the
thalamic input from the same VB nucleus into multiple areas. The
thalamocortical projections develop additional branches within the
white matter, a region that corresponds to the location of subplate
neurons (Shimogori & Grove, 2005). The earliest thalamocortical
interactions and the eventual thalamocortical entry into the cortical

plate are orchestrated by the subplate (Allendoerfer & Shatz, 1994;
Kanold & Luhmann, 2010). The recognition of the ultimate target
neurons within layer 4 of the cerebral cortex and the maturation of
these connections relies on multiple cellular and molecular mecha-
nisms (see Blakey et al., 2012 and Yamamoto & López-Bendito,
2012; both in this issue of EJN). The transient circuits between
subplate neurons, thalamic afferents and layer 4 neurons are now
widely recognized as constituting a key mechanism for early circuit
formation (Kanold & Luhmann, 2010). The subplate neurons integrate
into the cortical circuits in an age-specific and area-specific dynamic
fashion (Piñon et al., 2009; Hoerder-Suabedissen & Molnár, 2012;
Tolner et al., 2012; Viswanathan et al., 2012).

Concluding remarks

The development of thalamocortical connections relies on multiple
mechanisms. Early connectivity or migrating cell populations shape
the trajectory of this axonal tract and assist the crossing of several
boundaries. The diencephalic–telencephalic boundary and the PSPB
are considered to be the most vulnerable sectors of the pathway, with
various guidance defects and several default pathways being reported
in mutants with TF factor or axon guidance molecule defects. The
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Fig. 5. A summary of recent experiments testing the importance of corticofugal axons for thalamic axon crossing of the PSPB carried out by Chen et al. (2012). (A)
Normally, axons from the thalamus (T; red) cross the PSPB in close association with descending axons from the cortex (green). (B) In conditional
Emx1Cre;APCloxP ⁄ loxP mutants, the development of cortical neurons and hence of corticofugal axons is blocked, but, although the thalamus and VTel are
unaffected, thalamic axons do not cross the PSPB. (C) Culture experiments showed that both normal cortex and mutant cortex stimulate the growth of axons from the
thalamus by equal amounts. This suggests that the inability of thalamic axons to cross the PSPB in Emx1Cre;APCloxP ⁄ loxP mutants is unlikely to be explained by
long-range chemorepulsion by mutant cortex. (D) When normal cortex was substituted for mutant cortex in slice cultures from the brains of Emx1Cre;APCloxP ⁄ loxP
embryos, corticofugal axons were restored, and thalamic axons were able to cross the PSPB. These results provide evidence for the importance of corticofugal axons
in allowing thalamic axons to cross the PSPB.
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initial topography is also guided by several factors, some establishing
gradients in the VTel. The initial deployment of thalamic projections
and their accumulation below the cortex is orchestrated by gradients in
the subplate. There are several examples of substantial rearrangements
in this region before the final ingrowth into the cortical plate, through
either manipulations of the early cortical regionalization or changes in
the flow of sensory input from sense organs.
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(2009) Novel markers reveal subpopulations of subplate neurons in the
murine cerebral cortex. Cereb. Cortex, 19, 1738–1750.

Jacobs, E.C., Campagnoni, C., Kampf, K., Reyes, S.D., Kalra, V., Handley, V.,
Xie, Y.Y., Hong-Hu, Y., Spreur, V., Fisher, R.S. & Campagnoni, A.T.
(2007) Visualization of corticofugal projections during early cortical
development in a tau-GFP-transgenic mouse. Eur. J. Neurosci., 25, 17–30.

Jones, E.G. (2001) The thalamic matrix and thalamocortical synchrony. Trends
Neurosci., 24, 595–601.

Jones, E.G. (2007) The Thalamus. Cambridge University Press, Cambridge,
UK.
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López-Bendito, G., Chan, C.-H., Mallamaci, A., Parnavelas, J. & Molnár, Z.
(2002) The role of Emx2 in the development of the reciprocal connectivity
between cortex and thalamus. J. Comp. Neurol., 451, 153–169.

López-Bendito, G., Cautinat, A., Sánchez, J.A., Bielle, F., Flames, N., Garratt,
A.N., Talmage, D.A., Role, L.W., Charnay, P., Marı́n, O. & Garel, S. (2006)
Tangential neuronal migration controls axon guidance: a role for neuregulin-
1 in thalamocortical axon navigation. Cell, 125, 127–142.
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Appendix. Complexities of the current nomenclature:
neurons that cross the early diencephalic and
telencephalic subdivisions
The thalamocortical and corticofugal projections start to develop while
the various sectors of the telencephalon and diencephalon are being
generated. Numerous cell groups migrate tangentially (perpendicular to
the orientation of the radial glia) from the pallidum, LGE, MGE, and
CGE (de Carlos et al., 1996; Marı́n & Rubenstein, 2002; Parnavelas,
2002) ; there are streams of cells leaving the LGE and tangentially
migrating along the ventral pallium to enter the diencephalon (López-
Bendito et al., 2006).

In addition to these tangentially migrating neuronal populations,
there are several precocious groups of neurons in the diencephalon

and telencephalon whose axons and possibly cell bodies provide
guidance for thalamic axons. These cell groups have mostly been
identified by their connectivity (Mitrofanis & Guillery, 1993; Métin
& Godement, 1996; Molnár et al., 1998a,b; López-Bendito et al.,
2006). Unfortunately, they have not been named consistently in the
literature. We propose a simple nomenclature based on abbreviations
for the sites of the cell bodies and their target tissues: for example,
a transient axonal projection from the VTel to the thalamus is called
VTel–Th, one from the VTel to the cortex is called VTel–Cx, and
one from the prethalamus to the thalamus is called PTh–Th
(Table 1; Fig. 2). In this way, we are not confined by insufficient
knowledge of their origin, gene expression, or other little known
factors.
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