Cajal-Retzius cells in early postnatal mouse cortex selectively express functional metabotropic glutamate receptors

Juan Ramón Martínez-Galán,1,* Guillermina López-Bendito,1 Rafael Luján,1* Ryuichi Shigemoto,2 Alfonso Fairén1 and Miguel Valdeolmillos1

1Instituto de Neurociencias, CSIC, Universidad Miguel Hernández, Campus de San Juan, Apartado 18, 03550 San Juan de Alicante, Spain
2Laboratory of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan

Keywords: Cajal-Retzius cells, calcium transients, cerebral cortex development, metabotropic glutamate receptors, neurotransmitter receptors, reelin

Abstract
Glutamate receptors have been linked to the regulation of several developmental events in the CNS. By using cortical slices of early postnatal mice, we show that in layer I cells, glutamate produces intracellular calcium ([Ca2+]i) elevations mediated by ionotropic and metabotropic glutamate receptors (mGluRs). The contribution of mGluRs to these responses was demonstrated by application of tACPD, an agonist to groups I and II mGluRs, which evoked [Ca2+]i increases that could be reversibly blocked by MCPG, an antagonist to groups I and II mGluRs. In the absence of extracellular Ca2+, repetitive applications of tACPD or quisqualate, an agonist to group I mGluRs, elicited decreasing [Ca2+]i responses that were restored by refilling a thapsigargin-sensitive Ca2+ store. The use of specific group I mGluR agonists CHPG and DHPG indicated that the functional mGluR in layer I was of the mGluR1 subtype. Subtype specific antibodies confirmed the presence of mGlur1α, but not mGlur5, in Cajal-Retzius (Reelin-immunoreactive) neurons.

Introduction
Glutamate receptors play important roles during neural development (Komuro & Rakic, 1993; Kaczmarek et al., 1997). This amino acid acts both on ionotropic neurotransmitters and metabotropic receptors (mGluRs), which are coupled to G-proteins and second messengers to effecter mechanisms, mediating slower actions (Nakanishi et al., 1998). Some of the major roles played by the activation of glutamate receptors depend on complex interactions between mGluRs, intracellular Ca2+ stores and Ca2+-sensitive ion channels in neurons (Kawabata et al., 1996; Gu & Spitzer, 1997; Fagni et al. 2000). During CNS development, a variety of important events like neuronal migration and establishment of synaptic circuitry or plasticity have been related with the activation of both iGluRs and mGluRs (Komuro & Rakic, 1998; Anwyl, 1999; Furuta & Martin, 1999; Zirpel et al. 2000).

mGluRs include eight subtypes (mGluR1–mGluR8), classified into three groups based on sequence homology, pharmacology and transduction mechanisms. Group I includes mGluR1 and mGluR5, which exist in a number of alternatively spliced forms and stimulate phosphoinositol hydrolysis and the release of Ca2+ from intracellular stores (Conn & Pin, 1997). Thus, the existence of such a molecular diversity of mGluRs supports different physiological roles of specific receptor compositions in different neuronal populations. Differentiation of cortical laminae during neurogenesis is accompanied by changes in mGluR expression (Furuta & Martin, 1999) and spatiotemporal regulation of mGluR expression influences cortical maturation and plasticity (Reid et al., 1995; Blue et al., 1997; Casabona et al., 1997).

The mammalian cerebral cortex is organized into six layers that form during development according to an inside-out gradient of radial migration (Bayer & Altman, 1990). In rodents, the process of radial migration is well advanced before birth, but the neurons destined to layers IV and II–III still have to complete their migration and settling (Cobas et al., 1991; De Felipe et al., 1997). Cajal-Retzius cells in the cortical layer I secrete the extracellular matrix protein Reelin (Reln) that plays a pivotal role in radial migration and laminar organization of the cortex (D’Arcangelo et al., 1995, 1997; Ogawa et al., 1995). These cells express diverse types of neurotransmitter receptors including iGluRs and GABA_A receptors (Schwartz et al., 1998; Mienville & Pesold, 1999; Mienville, 1999). However, the existence of mGluRs in these cells has not been investigated.

In this paper, we demonstrate, by fluorimetric methods, the existence of functional mGluR1 in layer I cells of the postnatal mouse cerebral cortex, and by means of immunocytochemistry, a complete coexpression of the mGluR1α subtype and Reln in Cajal-Retzius cells.

Correspondence: Dr Miguel Valdeolmillos, as above for offprints.
E-mail: miguel.valdeolmillos@umh.es
*Present address: Facultad de Medicina, Universidad de Castilla-La Mancha, Edificio Benjamín Palencia, 02071 Albacete, Spain

Received 8 August 2000, revised 15 January 2001, accepted 15 January 2001
Materials and methods

Animals

Postnatal C57Bl mice ranging in age from 0–7 days (P0–P7) used in this study were purchased from the Departamento de Experimentación Animal of the Universidad Miguel Hernández. Experimental procedures were carried out in accordance with Institutional guidelines for animal welfare and European Community Directives.

Immunohistochemistry

Eight mice were deeply anaesthetized with diethyl ether until reflex activity was completely abolished and perfused with 0.9% saline, 0.1% sodium nitrite followed by a freshly prepared ice-cold fixative containing 4% paraformaldehyde and ~ 0.2% picric acid in 0.1 M phosphate buffer (PB, pH 7.2–7.4). After perfusion, brains were removed and immersed in the same fixative for 2 h at 4 °C. Tissue blocks were dissected out and washed thoroughly in 0.1 M PB for several hours. Coronal, 60 µm-thick sections of cerebral cortex were cut with a Vibratome and collected in 0.1 M PB. Some sections were used for immunofluorescence detection and visualization of the colocalization of mGluR1α, mGluR5 and Reln immunoreactivities using a laser scanning confocal microscope.

Affinity-purified polyclonal antibodies against mGluR1α and mGluR5 were made in rabbits (for the characteristics and specificity of these antibodies, see Shigemoto et al., 1994; Jaarsma et al., 1998). A monoclonal anti-Reln antibody (G10) was also used (de Bergeyck et al., 1997) gift of Dr A.M. Goffinet (Namur, Belgium). Sections were first incubated with 10% normal goat serum diluted in 50 mM Tris buffer (pH 7.4) containing 0.9% NaCl (TBS) for 45 min and incubated in a mixture of mGluR1α and reelin, or mGluR5 and Reln antibodies in TBS containing 1% NGS and 0.2% Triton X-100, at a final protein concentration of 1–2 µg/mL. Sections were washed in TBS and incubated for two hours in biotinylated goat anti-rabbit secondary antibody, and then in a mixture of streptavidin coupled to carbocyanine Cy2 and goat anti-mouse IgG coupled to carbocyanine Cy3 (Amersham, UK). The secondary antibodies and the streptavidin-Cy2 conjugate were used at a dilution of 1 : 100 in TBS containing 1% NGS and 0.2% Triton X-100, at a final protein concentration of 1–2 µg/mL. Sections were washed in TBS and incubated for two hours in biotinylated goat anti-rabbit secondary antibody, and then in a mixture of streptavidin coupled to carbocyanine Cy2 and goat anti-mouse IgG coupled to carbocyanine Cy3 (Amersham, UK). The secondary antibodies and the streptavidin-Cy2 conjugate were used at a dilution of 1 : 100 in TBS containing 1% NGS. After extensive washes in TBS, the sections were mounted on gelatinized slides and coverslipped with Vectashield (Vector Labs, USA). A Leica DMR microscope equipped with fluorescence illumination and fitted with a Leica TLSCM confocal scanner module with a Kr/Ar laser source was used to obtain confocal images of the immunostained sections (Cy2 abs: 489, emm: 520; Cy3 abs: 550; emm: 570). Some sections were processed for light microscopy visualization of mGluR1α, mGluR5 and Reln using the avidin–biotinylated enzyme complex (ABC; Vector Labs, USA) system and 3,3’-diaminobenzidine tetrahydrochloride (DAB) as the chromogen. Slides were osmiﬁed to enhance contrast.

Preparation of slices for Ca2+ imaging

Animals were anaesthetized by deep hypothermia and then decapitated. The brain was rapidly removed and placed into continuously bubbled (95% O2 and 5% CO2 pH of 7.3), cold artificial cerebrospinal fluid (ACSF) which contained: 124 mM NaCl, 5 mM KCl, 1.2 mM KH2PO4, 1.3 mM MgSO4, 2.4 mM CaCl2 and 10 mM glucose. 300 µm-thick coronal cortical slices were cut with a Vibratome (Technical Products International, USA) and preincubated in ACSF. For the experiments described in this study, 220 slices from 60 animals were processed.

Calcium imaging

Cortical slices were placed at room temperature in ACSF containing 16 µM Fura-2 AM (Molecular Probes, Eugene, OR, USA) and 0.09% anhydrous dimethylsulfoxide and 0.006% pluronic acid for 1 h. Slices were transferred in standard ACSF to the stage of an upright Zeiss Axioskop microscope and visualized through a 60x water immersion objective (Olympus, NA = 0.9). Slices were excited at 340 and 380 nm, and the fluorescence emitted at 510 nm was recorded by a Hamamatsu C2400 intensifier-Dage 72 video camera. Time-lapse images were acquired every 1–3 s and spatially analysed using a MCID M4 System (Imaging Research Inc., St. Catherine’s, Ontario, Canada). No background subtraction or filtering was applied to the images.

Intracellular calcium ([Ca2+]i) was calculated by interpolation of the ratio images into a look-up table constructed by imaging Fura-2 solutions with known calcium concentration in the same experimental set-up, using the following equation (Gryniewicz et al., 1985):

\[[Ca^{2+}]_i = K_d (R - R_{	ext{min}})/(R_{	ext{max}} - R)F_0/F_{	ext{max}} \]

Where \(K_d \) is the Fura-Ca2+ binding constant (220 nM), \(R \) is the ratio of Fura-2 fluorescence at 340 and 380 nm, \(R_{	ext{min}} \) and \(R_{	ext{max}} \) are values of \(R \) in Ca2+-free (1 mM EGTA added) and 2 mM Ca2+ medium, respectively, using Fura-2 penta K+ salt. \(F_0/F_{	ext{max}} \) is the ratio of Fura-2 fluorescence at 380 nm in Ca2+-free (1 mM EGTA) and 2 mM Ca2+ medium.

Resting \([Ca^{2+}]_i\), was measured in 88 cells, from 20 different slices, and had a mean value of 92 ± 5 nM (mean ± SEM). Unless otherwise indicated, the experiments were performed at room temperature (23–26 °C). 0.5 mM ethylene glycol-bis (β-aminoethyl-ether) N,N,N',N'-tetraacetic acid (EGTA) was added to the medium containing zero calcium. In the figures, changes in \([Ca^{2+}]_i\), are expressed as absolute increase with respect to the basal value.

Drugs where applied through a pumped line at a rate of 4 µL/min for the time indicated in the figures. Some slices were preincubated with 10 µM thapsigargin in ACSF for 30 min before calcium recording, NMDA, kainate, quisqualate, (±)-2-amino-5-phosphonovaleric acid (APV), 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and tetrodotoxin (TTX) were purchased from Research Biochemical Inc (RBI, Natick, MA, USA). (±)-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), (±)-1-aminocyclopentane-trans-1, 3-dicarboxylic acid (tACPD), (S)-alpha-methyl-4-carboxiphenylglycine (MCPG), (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and (S)-3,5-Dihydroxyphenylglycine (DHPG) were purchased from Tocris Cookson (UK). Thapsigargin was purchased from Sigma (St Louis, MO, USA). Drugs were prepared as stock solutions in distilled H2O, with the exception of tACPD, MCPG and CHPG, which were prepared in 1N NaOH. All drugs were stored at 4 °C and prepared to working concentrations in ACSF daily.

Numerical data were statistically analysed using one-way analysis of variance (ANOVA) and Bonferroni t-test to assess differences among groups.

Results

MGLUR activation increases intracellular calcium in layer I cells

Bath application of glutamate (Glu) at 50 µM induced conspicuous increases in \([Ca^{2+}]_i\), in layer I cells. As illustrated in the experiment shown in Fig. 1A (first set of traces), the amount of the \([Ca^{2+}]_i\) increase was quantitatively heterogeneous among the different cells. Such an effect was in part mediated by the activation of iGluRs including NMDA, AMPA and kainate receptors (not shown).

© 2001 Federation of European Neuroscience Societies, European Journal of Neuroscience, 13, 1147–1154
Accordingly, we tested the effect of specific iGluR antagonists in suppressing such an effect. APV (an antagonist of NMDA receptors) plus CNQX (an antagonist of AMPA and kainate receptors) decreased drastically the response in some cells (notably in cells 6 and 7, Fig. 1A, second set of traces), whilst in other cells the response remained unaltered (cells 2–5). This could indicate that a sizeable component of the \([\text{Ca}^{2+}]\) increases evoked by Glu may be mediated by the activation of mGlu receptors. We confirmed such a possibility by superfusing the slices with mGluR antagonists. The addition of MCPG, a competitive antagonist of both group I and II mGluRs, completely abolished the \([\text{Ca}^{2+}]\) response to Glu in all the cells (Fig. 1A, third set of traces). Changing the order of antagonist application gave essentially the same results (not shown). The quantification of the results is summarized in the graph of Fig. 1B.

To positively assess the participation of mGluRs in the generation of \([\text{Ca}^{2+}]\) transients, we tested the effect of mGluR agonists (Conn & Pin, 1997; Schoepp et al., 1999). We first tested the effect of tACPD, which is an agonist of both group I and II mGluRs. Figure 2A shows the increase of \([\text{Ca}^{2+}]\), caused by tACPD in five representative cells of the same slice. Figure 2B shows that the addition of 1 mM MCPG blocked the response to tACPD, being the effect reversible as shown in the third panel. The quantification of the responses is shown in Fig. 3B.

This experiment was not completely conclusive of the role of mGluR in the generation of the \([\text{Ca}^{2+}]\) transients, because the response to the mGluR agonist tACPD might be secondary to the synaptic release of Glu and the activation of iGluRs. If this were the case, perfusion with the iGluR antagonists APV plus CNQX would abolish the \([\text{Ca}^{2+}]\) response to tACPD. To exclude this possibility, we compared the effects of tACPD in the presence or in the absence of the iGluR antagonists APV and CNQX. We tested, in addition, the effect of the Na⁺ channel blocker TTX, which prevents any synaptic Glu release. Figure 3A shows an example of such an experiment where the \([\text{Ca}^{2+}]\) response of four representative cells to a tACPD challenge did not change in the presence of the iGluR antagonists. Figure 3B summarizes the responses in quantitative terms. These results suggest that the effects of tACPD on \([\text{Ca}^{2+}]\) were a direct effect of the activation of mGluRs by tACPD.

The intracellular origin of \([\text{Ca}^{2+}]\)

The activation of group I mGluRs is coupled to phosphatidylinositol hydrolysis, production of IP3 and the release of \([\text{Ca}^{2+}]\) from intracellular stores (Berridge, 1998). We, therefore, studied the response to mGluR agonists in the absence of extracellular calcium. In the case experiment illustrated in Fig. 4 (representative of 21 cells from six slices), the slices were superfused with a nominally Ca²⁺-free solution (supplemented with 0.5 mM EGTA). The traces show the effect of mGluR agonist tACPD (Fig. 4A) in three representative cells of layer I. While the slices were being superfused with a Ca²⁺-free solution, the first application of tACPD led to a prominent \([\text{Ca}^{2+}]\) increase and to a subsequent decrease in \([\text{Ca}^{2+}]\), below the prestimulatory level. A second application of tACPD elicited a
smaller \([Ca^{2+}] \) response and a third application produced no \([Ca^{2+}] \) response. One could tentatively interpret the decremental effect of the successive tACPD pulses as being due to the exhausting of the intracellular \(Ca^{2+} \) stores. To show that these stores could be refilled, the slice was then superfused with ACSF at a physiological (2.4 mM) \(Ca^{2+} \) concentration for two minutes, which rapidly raised \([Ca^{2+}] \), to prestimulatory levels. A fourth application of tACPD, during superfusion with the \(Ca^{2+} \)-free solution, increased \([Ca^{2+}] \), almost to the level of the first tACPD challenge. These results suggest that the reintroduction of extracellular \(Ca^{2+} \) led to the refilling of the tACPD sensitive stores that rendered the cells again responsive to the mGluR agonist tACPD.

Quisqualate is an agonist of both AMPA type of iGluRs and group I mGluRs (Nakanishi & Masu, 1994; Nakanishi et al., 1998). In the absence of extracellular \(Ca^{2+} \), \([Ca^{2+}] \), transients elicited by quisqualate can only be mediated by activation of group I mGluRs. In the experiment shown in Fig. 4B, we used a nominally \(Ca^{2+} \)-free ACSF perfusate. The first quisqualate challenge elicited an \([Ca^{2+}] \) transient but the successive quisqualate challenges had no effect. Refilling the stores by adding 2.4 mM \(Ca^{2+} \) for two minutes, made the cells once more responsive to quisqualate, as shown by the fourth quisqualate challenge. Similar results were obtained in 14 cells from four slices. Consistent with these results, Fig. 4 (lower panels) shows that the effects of tACPD were blocked in the presence of the endoplasmic reticulum calcium pump inhibitor thapsigargin (Glennon et al., 1992). The first set of traces show the response to tACPD of three representative cells labelled in the photomicrograph. At the end of the tACPD exposure, the slice was superfused with thapsigargin for 10 minutes and challenged again with tACPD, as shown in the second set of traces. In seven slices in which the same experimental protocol was repeated, no cell responded to tACPD after thapsigargin treatment.

Cells responding to mGluRs agonists are neurons

The cellular populations of layer I in a postnatal cortical slice are rather diverse and includes neurons and glial cells. Although glial cells do not express NMDA receptors, they do express mGluRs (Cornell-Bell et al., 1990; Nadal et al., 1998). Therefore, it is possible that the \([Ca^{2+}] \) responses described above might have occurred in glial cells rather than in neurons. Another set of experiments provided evidence that the cells that responded to mGluR agonists also responded to NMDA. An example of such an experiment is shown in FIG. 4. The response to mGluR agonists depends on \(Ca^{2+} \) release from intracellular stores. Upper panels: (A) response to tACPD (50 \(\mu \)M) in \(Ca^{2+} \)-free ACSF (0.5 mM EGTA added) of three representative layer I cells. The slice was challenged four times with tACPD (as indicated by the bars). At the time indicated by the thick bar, the slice was superfused with ACSF with a standard calcium concentration (2.4 mM). The fourth challenge with tACPD again occurred while superfusing with the calcium-free solution. This experiment is representative of the results obtained in six different slices. (B) Results of a similar experimental protocol in a different slice, in which the mGluR agonist tested was quisqualate (5 \(\mu \)M). The same results were obtained in four different experiments. (Lower panels) The first set of traces show the response of the cells labelled in the photomicrograph to tACPD (25 \(\mu \)M). The cells are situated just below the pial surface. Then the slice was superfused with a medium containing thapsigargin (2 \(\mu \)M) for 10 minutes and again challenged with tACPD (25 \(\mu \)M). Figure representative of results obtained in seven different experiments. Scale bar in B, 100 \(\mu \)M.
mGluRs in mouse Cajal-Retzius cells

Fig. 5. Coexistence of iGluRs and mGluRs in the same cells. The first set of traces (left) shows the response to quisqualate (5 µM) in the absence of extracellular calcium (EGTA 0.5 mM) of the five representative cells labelled in the photomicrograph. The second set of traces (right) shows the response of the same cells to NMDA (100 µM) in the absence of extracellular Mg²⁺. This experiment is representative of the results obtained in four different slices. Scale bar, 25 µm.

Fig. 6. Immunocytochemical detection of mGluR1α and mGluR5 in the cerebral cortex of P7 mice. (A–B) mGluR1α is expressed by horizontally orientated cells located at a short distance below the pial surface. Arrows point to identical cells in A and in the enlarged picture shown in B. Note that no immunoreactive cells are found in deep cortical layers. (C) mGluR5 is expressed in the neuropil of the cortical layers and shows a particularly strong expression in the barrel hollows (indicated by asterisks) of the somatosensory cortex. No layer I cells are labelled. Scale bars, 50 µm (A and C); 25 µm (B).

Fig. 5. In this case, the slice was challenged with quisqualate in the absence of extracellular Ca²⁺, as shown in the first set of traces. In four out of five cells (the exception being cell 4), quisqualate elicited an increase in [Ca²⁺]. When challenged with NMDA in a normal Ca²⁺ ACSF perfusate, all the cells (including cell 4) responded with an increase in [Ca²⁺]. In the four slices (24 cells) where this protocol was repeated, 67% of the cells responded to both agonists, 16% responded to NMDA only and 8% to quisqualate only. Essentially the same results were obtained when the NMDA challenge was performed in the presence of the non-NMDA receptor antagonist CNQX (40 µM; not shown). These results indicate that, in our experiments, most of the cells that showed [Ca²⁺] increases through mGluRs were neurons.

Cajal-Retzius cells express mGlu1α and not mGluR5

The results presented so far indicate that the selective activation of group I mGluRs, by bath applied ligands, to acute cortical slices produced [Ca²⁺] transients in layer I cells that were most likely neuronal in nature.

Recent studies (Meyer et al., 1998, 1999) have revealed the existence of many different neuronal types in layer I of postnatal rodents. To facilitate the identification of the cells that express functional mGluRs, we made an attempt at neurochemical identification using immunocytochemical methods. The experiments showed that mGluR subtype 1α was strongly expressed by cells in layer I that displayed the morphology of Cajal-Retzius cells (Fig. 6A and B). In brief, these cells were horizontally orientated fusiform cells with long dendritic processes coursing parallel to the pial surface; some of these cells located subpially (Fig. 7A and B). We found no mGluR5-immunoreactive cells in layer I; mGluR5 was detected only in the cortical plate neuropil and more strongly in the neuropil of the barrel hollows in layer IV (Fig. 6C). Metabotropic GluR1α-expressing cells in layer I were confirmed as being Cajal-Retzius cells in double labelling experiments (Fig. 7) that showed, at P2 and P7, that virtually all mGluR1α-expressing cells coexpressed Reln.

Cajal-Retzius cells have functional mGluR1 receptors

These results were, thus, compatible with the idea that the [Ca²⁺] transients in Cajal-Retzius cells could be mediated by the activation of mGluR1 receptors. To confirm that the immunocytochemically-detected expression of mGluR1α has a functional correlate, we assayed the slices with selective agonists to group I mGluRs. Recently developed group selective and subtype selective agonists of group I mGluRs allowed us to define what receptor subtype was responsible for the [Ca²⁺] elevations. The bath application of 50 µM DHPG (a group I selective agonist) led to sustained increases of [Ca²⁺] (net calcium increase 89 ± 5.9 nm, n = 50 cells from six slices) (Fig. 8A), whereas CHPG (mGluR5 selective agonist) had no effect on [Ca²⁺], whatsoever (n = 6 slices). Figure 8B shows the localization, in layer I, of the cells activated by DHPG. Figure 8Ba shows the slice image of Fura-2 fluorescence excited at 340 nm, where the soma of individual cells (labelled 1–4) can be distinguished. The fluorescent cells were located at a distance within 50 µm below the border of the slice, indicated by the discontinuous line. Figure 8Bb–c shows false-colour images of [Ca²⁺], before (b) and during the peak (c) of the response to DHPG. The graph in Fig. 8B shows the variations of [Ca²⁺] in the cells labelled in Fig. 8Ba with time. In these experiments, DHPG was locally applied by pressure injection through a pipette located close to the imaged area. Letters ‘b’ and ‘c’ below the graph indicate the times at which the calcium images shown in Fig. 8Bb–c were taken. These results enabled us to conclude that the [Ca²⁺] transients in Cajal-Retzius cells analysed in the present study were mediated by the activation of the mGluR1 receptor.

Discussion

In this paper, we have characterized mGluRs as important mediators of the [Ca²⁺] response to glutamate of layer I cells in early postnatal...
FIG. 7. Confocal images showing a virtually complete colocalization of the immunoreactivity for mGluR1α and Reln at P2 and P7. (A and D) mGluR1α immunoreactivity; (B and E) Reelin immunoreactivity; (C and F) Merged images. Scale bars, 20 μm.

FIG. 8. Effects on [Ca2+]i of selective agonists of group I mGluRs. (A) The traces show the response of five representative cells to CHPG and to DHPG. This experiment is representative of the results obtained in six different slices. (B) Photomicrograph Ba shows Fura-2 fluorescence (excitation 340 nm); the pial border is indicated by the discontinuous line. Four representative layer I cells (1–4) were sampled and their responses to DHPG plotted in the graph below. Photomicrographs Bb and Bc show false-colour images of [Ca2+]i, taken at the times indicated on the graph. Scale bar in Ba applies to all three photomicrographs.
mouse cortical slices. The results of our fluorimetric experiments using tACPD and, more specifically, CHPG and DHPG selective subtype agonists, suggest the participation of functional mGluR1 in mediating this response to glutamate in layer I neurons. The present immunocytochemical studies show a virtually complete coexpression of mGluRIα and Reln, suggesting that Cajal-Retzius cells are the layer I cells that respond with [Ca\(^{2+}\)]\textsubscript{i}, increases to mGluR agonists.

Previous work in expression systems has shown that glutamate evokes nonoscillatory and oscillatory [Ca\(^{2+}\)]\textsubscript{i} responses in cells that express mGluR1 and mGluR5, respectively (Kawabata et al., 1996; Nakanishi et al., 1998). Several patterns of calcium dynamics that could be of importance in signal transduction and regulation of gene expression have been described in the developing neocortex, including isolated transients, co-ordinated [Ca\(^{2+}\)]\textsubscript{i} increase in local cell clusters, synchronous transients of cell pairs undergoing mitotic division and oscillations (Yuste et al., 1992, 1995; Owens & Kriegstein, 1998; Flint et al., 1999). The generation of spontaneous [Ca\(^{2+}\)]\textsubscript{i} oscillations in the cortical plate-derived layers of the murine cortex is due to the activation of mGluR5 (Flint et al., 1999). This is consistent with our observation of a preferential localization of mGluR5 in the neuropil of the cortical layers of postnatal mice and its absence from layer I cells (Romano et al., 1996; Blue et al., 1997).

The [Ca\(^{2+}\)]\textsubscript{i} increases we observe in layer I cells are nonoscillatory which, together with the responses to specific group I mGluRs agonists, suggest that the responses are due to mGluR1 activation. Moreover, the colocalization of mGluR1 and Reln, detected by immunohistochemistry, strongly suggests that mGluR1 is active in Reln-expressing Cajal-Retzius cells. It may be speculated that the differential expression of group I mGluRs and the different patterns of their associated [Ca\(^{2+}\)]\textsubscript{i} signals, either nonoscillatory and oscillatory, may have different functional roles. It remains to be established how the different calcium codes are translated into different intracellular messages in different layers of the developing cortex.

Cajal-Retzius cells are considered to play a critical role during neocortical development. They secrete Reln, an extracellular matrix molecule, whose absence in the mouse mutant reeler causes a severe cortical laminar disruption (Frotscher, 1998; Curran & D'Arcangelo, 1998). The molecular cascade acting downstream of Reln is beginning to be understood (Cooper & Howell, 1999; Walsh & Goffinet, 2000). However, the functional mechanisms that regulate Reln synthesis and secretion have been little explored. So far, brain-derived neurotrophic factor (BDNF) and thyroid hormone have been shown to regulate Reln expression (Ringstedt et al., 1998; Alvarez-Dolado et al., 1999), as well as the transcription factor Tbr1 (Hevner et al., 1999). Whether or not calcium signals play a role in Reln secretion has been recently debated. Lacor et al. (2000) have shown that extracellular influx of Ca\(^{2+}\) into cultured cerebellar granule cells does not affect Reln secretion and concluded that Reln secretion is constitutive, as is the case with other extracellular matrix molecules. Alternatively, calcium signalling may regulate the expression of Reln as is the case for other genes (Fields et al., 1997; Dolmetsch et al., 1998; Li et al., 1998; Buonanno & Fields, 1999).

There is electrophysiological evidence indicating a tonic activity in cortical cells mediated by NMDA and non-NMDA GluRs (Lo Turco & Kriegstein, 1991; Kim et al., 1995; Schwartz et al., 1998), suggesting that a release of Glu may occur in the vicinity of layer I cells under physiological conditions. Accordingly, as new cortical plate neuron cohorts arrive in the vicinity of layer I, they would release Glu that could activate mGluRs in Cajal-Retzius cells and positively regulate Reln synthesis. This mechanism is compatible with Reln acting as a stop signal for cells arriving at layer I (Pearlman & Sheppard, 1996).

In summary, our results demonstrate that mGluRIα is expressed in layer I cells that also express Reln, and that a large proportion of the [Ca\(^{2+}\)]\textsubscript{i} response of layer I cells to Glu is due to activation of such receptors. mGluRIα activation may arise as a consequence of cells arriving at layer I, and be linked to the synthesis of Reln, which is essential for correct layering of the cortex.

Acknowledgements

MV and AF are senior coauthors of this work, which was supported by Ministerio de Educación y Cultura, grants SAF97/0195 and SAF 2000-0152-C02-02 to M.V; PB94-0219-C02-01 and PB97-0582-C02-01 to A.F., Acción Especial de R+D AE98-18 from Generalitat Valenciana, and a Fellowship from Bancança-C.S.I.C. to J.R.M.-G. We wish to thank André M. Goffinet for his G10 antireelin antibody and Roberto Gallego, Juan M. Luque and Félix Viana for their constructive criticisms on previous versions of the manuscript.

Abbreviations

ABC, avidin-biotinylated enzyme complex; ACSF, artificial cerebrospinal fluid; tACPD, (±)-1-aminoacyclohexane-trans-1, 3-dicarboxylic acid; AMPA, (±)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; APV, (±)-2-amino-5-phosphonovaleric acid; BDNF, brain-derived neurotrophic factor; [Ca\(^{2+}\)]\textsubscript{i}, free intracellular calcium; CHPG, (RS)-2-Chloro-5-hydroxypyridine-glycine; CNQX, 6-cyano-7-nitroquinoxaline-2, 3-dione; DAB, 3,3′-diaminobenzidine tetrahydrochloride; DHPG, (S)-3,5-Dihydroxyphenylglycine; EGTA, ethylene glycol-bis-(β-amin-ethyl-ether) N,N,N′,N′-tetraacetic acid; Glu, glutamate; mGluRs, metabotropic glutamate receptors; iGluRs, ionotropic glutamate receptors; MCPG, (S)-α-methyl-4-carboxyphenylglycine; NMDA, N-methyl-D-aspartate; PB, phosphate buffer; Reln, reelin; TBS, Tris-buffered saline; TTX, tetrodotoxin.

References

